

CTTH Cloud Top Temperature and Height 15th June 2004 Madrid

Hervé Le Gléau and Marcel Derrien Météo-France / CMS lannion

Plan of CTTH presentation

Algorithms' short description

Some examples

Planned activities in 2004

CTTH product

Products		
Cloud Top Temperature	180 - 320 K	step: 1 K
Cloud Top Pressure	0 - 1050 hPa	step: 25 hPa
Cloud Top Height	-400 - 20000 m	step: 200 m
Cloud Effective Cloudiness	0% - 100 %	step: 5 %

Quality flag: NWP input data availability

SEVIRI data availability

CTTH quality itself

Indication on the method used

CTTH algorithm: generality

✓ Vertical temperature & humidity profile forecast by NWP needed

- ✓ TOA radiances from the top of overcast opaque clouds put at various pressure levels are simulated with RTTOV (NWP vertical profiles are temporally interpolated to each slot)
- Cloud top pressure is first extracted using RTTOV simulated radiances; Method depending on cloud type.
- ✓ Cloud top temperature & height are derived from their pressure (using vertical temperature & humidity profile forecast by NWP).

CTTH algorithm: opaque clouds

For opaque clouds (known from CT)

The cloud top pressure corresponds to the best fit between the simulated and measured $10.8\mu m$ radiances (simulated radiances are spatially interpolated to individual pixel)

For broken low clouds

No technique has yet been implemented.

CTTH algorithm: semi-transparent clouds

For semi-transparent clouds :

A correction of the semi-transparency is applied, using a pair of infrared channels:

-a window channel: 10.8µm and

-a sounding channel (13.4 μ m, 7.3 μ m or 6.2 μ m)

✓ The basis is:

A cloud corresponding to a given radiative temperature in the window channel will have a higher impact in the sounding channel if the cloud is at a higher altitude.

CTTH algorithm: semi-transparent clouds

For semi-transparent clouds :

Two methods are applied, relying on RTTOV simulations:

✓Intercept method based on histogram analysis

✓ Radiance ratioing applied on a pixel basis

Illustration of intercept method

Illustration of radiance ratioing

Comparison of radiance ratioing and intercept methods

 \checkmark Both methods are sensitive to RTTOV simulations from NWP

✓Intercept method

✓ gives results at histogram box scale

✓ Radiance ratioing

✓ gives results at pixel scale
✓ but is very sensitive to clear pixel's choice
✓ is not applied to too thin clouds

Examples of cloud top pressure

Cloud top pressures are displayed using colour palette available in hdf file.

- Low clouds and fog 5th February 2004 Oh & 12h
- Convection 28th July 2003 12h-16h

Low clouds case: 5th February 2005 0h and 12h TU

NOAA-16 14hTU

Forecast wind and surface pressure 5th February 2004 10h

200-250 hPa 250-300 hPa 300-350 hPa 350-400 hPa 400-450 hPa 450-500 hPa 500-550 hPa 550-600 hPa 600-650 hPa 650-700 hPa 700-750 hPa 750-800 hPa 800-850 hPa 850-900 hPa 900-950 hPa 950-1000 hPa 1000-1050 hPa

Nimes: 900-950hPa (T10.8µm=3°C)

5th February 2004 Oh

200-250 hPa 250-300 hPa 300-350 hPa 350-400 hPa 400-450 hPa 450-500 hPa 500-550 hPa 550-600 hPa 600-650 hPa 650-700 hPa 700-750 hPa 750-800 hPa 800-850 hPa 850-900 hPa 900-950 hPa 950-1000 hPa 1000-1050 hPa

Nimes: 700-800hPa (T10.8μm=3°C)

5th February 2004 12h

Convective case: 28th July 2003 12-16hTU

Cloud Top Pressure

50-100 hPa 100-150 hPa 150-200 hPa 200-250 hPa 250-300 hPa 300-350 hPa 350-400 hPa 400-450 hPa 450-500 hPa 500-550 hPa 550-600 hPa 600-650 hPa 650-700 hPa 700-750 hPa 750-800 hPa 800-850 hPa 850-900 hPa 900-950 hPa 950-1000 hPa 1000–1050 hPa

23

Convective case: 28th July 2003 12-16hTU

Known problems

CTTH :

- ✓ CTTH may be wrong if CT is wrong (method used by CTTH is different for opaque or semi-transparent clouds)
- ✓ No CTTH is available for clouds classified as fractional
- \checkmark CTTH may not be computed for too thin cirrus
- ✓ CTTH for cirrus may have a square-like appearance due to the use of histogram analysis in the retrieval process
- ✓ Retrieved low cloud top height may be overestimated

Planned activities in 2004

Improvements to be included in SAFNWC (v1.2)
✓ Top height of low clouds in case thermal inversion

✓Use of RTTOV7 instead RTTOV6

Validation of cloud top height:

✓ high semi-transparent clouds: with lidar[®]

✓low cloud: with radio-sounding

Validation TEMP Stations

