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1 The EUMETSAT SAF on Climate Monitoring 

The importance of climate monitoring with satellites was recognized in 2000 by EUMETSAT 

Member States when they amended the EUMETSAT Convention to affirm that the 

EUMETSAT mandate is also to “contribute to the operational monitoring of the climate and 

the detection of global climatic changes". Following this, EUMETSAT established within its 

Satellite Application Facility (SAF) network a dedicated centre, the SAF on Climate 

Monitoring (CM SAF, http://www.cmsaf.eu). 

The consortium of CM SAF currently comprises the Deutscher Wetterdienst (DWD) as host 

institute, and the partners from the Royal Meteorological Institute of Belgium (RMIB), the 

Finnish Meteorological Institute (FMI), the Royal Meteorological Institute of the Netherlands 

(KNMI), the Swedish Meteorological and Hydrological Institute (SMHI), the Meteorological 

Service of Switzerland (MeteoSwiss), and the Meteorological Service of the United Kingdom 

(UK MetOffice). Since the beginning in 1999 , the EUMETSAT Satellite Application Facility 

on Climate Monitoring (CM SAF) has developed and will continue to develop capabilities for 

a sustained generation and provision of Climate Data Records (CDR’s) derived from 

operational meteorological satellites. 

In particular the generation of long-term data sets is pursued. The ultimate aim is to make the 

resulting data sets suitable for the analysis of climate variability and potentially the detection 

of climate trends. CM SAF works in close collaboration with the EUMETSAT Central 

Facility and liaises with other satellite operators to advance the availability, quality and 

usability of Fundamental Climate Data Records (FCDRs) as defined by the Global Climate 

Observing System (GCOS). As a major task the CM-SAF utilizes FCDRs to produce records 

of Essential Climate Variables (ECVs) as defined by GCOS. Thematically, the focus of CM 

SAF is on ECVs associated with the global energy and water cycle. 

Another essential task of CM SAF is to produce data sets that can serve applications related to 

the new Global Framework of Climate Services initiated by the WMO World Climate 

Conference-3 in 2009. CM SAF is supporting climate services at national meteorological and 

hydrological services (NMHSs) with long-term data records but also with data sets produced 

close to real time that can be used to prepare monthly/annual updates of the state of the 

climate. Both types of products together allow for a consistent description of mean values, 

anomalies, variability and potential trends for the chosen ECVs. CM SAF ECV data sets also 

serve the improvement of climate models both at global and regional scale. 

As an essential partner in the related international frameworks, in particular WMO SCOPE-

CM (Sustained COordinated Processing of Environmental satellite data for Climate 

Monitoring), the CM SAF - together with the EUMETSAT Central Facility, assumes the role 

as main implementer of EUMETSAT’s commitments in support to global climate monitoring. 

This is achieved through: 

• Application of highest standards and guidelines as lined out by GCOS for the satellite 

data processing, 

• Processing of satellite data within a true international collaboration benefiting from 

developments at international level and pollinating the partnership with own ideas and 

standards, 

• Intensive validation and improvement of the CM SAF climate data records, 
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• Taking a major role in data set assessments performed by research organisations such 

as WCRP. This role provides the CM SAF with deep contacts to research organizations 

that form a substantial user group for the CM SAF CDRs, 

• Maintaining and providing an operational and sustained infrastructure that can serve 

the community within the transition of mature CDR products from the research 

community into operational environments. 

A catalogue of all available CM SAF products is accessible via the CM SAF webpage, 

www.cmsaf.eu/. Here, detailed information about product ordering, add-on tools, sample 

programs and documentation is provided. 

 

2 Introduction 

This CM SAF Algorithm Theoretical Basis Document (ATBD) describes a new probabilistic 

cloud masking product - denoted CMA-prob – which has been developed by CM SAF during 

the CDOP-2 and CDOP-3 phases. It is based on Bayesian theory and it is complementary to 

the SAFNWC PPS cloud mask which was used when defining the CMSAF CLARA-A1 and 

CLARA-A2 datasets (i.e., the Fractional Cloud Cover product CM-11011). The idea is that on 

a longer term (CLARA-A3, and beyond) this new probabilistic cloud mask will replace the 

current one in order to improve the error characterisation of cloud masking and its influence 

on downstream cloud, surface radiation and surface albedo products. For CLARA-A2 only a 

demonstration product was provided for users to become acquainted with the product 

capability and for preliminary evaluation. 

The ATBD generally follows the description of the method in Karlsson et al. (2015) but 

describes also several extensions which were introduced to improve the quantitative 

usefulness of the CMA-prob product. One of the most central new features is that the CMA-

prob value of 50 % has been tuned to give optimal cloud detection everywhere regardless of 

underlying surfaces and observation conditions. 

 

2.1 Applicable documents 

Refere

nce  
Title Code 

Version Date 

AD 1 
NWC SAF Product Requirements 

Document 
NWC/CDOP3/SAF/AEMET/MGT/PRD 

1.1 17/12/2018 

2.2 Reference documents 

Refere

nce  
Title Code 

Version Date 

RD 1 

Algorithm Theoretical Basis 

Document for the Cloud Mask of 

the NWC/PPS 

NWC/CDOP3/PPS/SCI/ATBD/CloudMask 

2.1 13/12/2018 

RD 2 

Scientific and Validation Report 

for the Cloud Product Processors 

of the NWC/PPS 

NWC/CDOP3/PPS/SMHI/SCI/VR/Cloud 

2.0 13/12/2018 
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3 Theoretical description of the CMA-prob method 

3.1 Background – problems with traditional cloud masking and suggested new 

approaches 

For many years, the definition of fixed cloud masks or cloud masks with a small set of quality 

flags has been the most common way of solving the cloud screening problem in applications 

based on passive multispectral satellite imagery. Many examples of this exist in the literature, 

e.g., Dybbroe et al., (2005a, 2005b), Kriebel et al. (2003), Derrien and LeGleau (2005), Frey 

et al. (2008) and Pavolonis et al. (2005). The use of a fixed cloud mask is straightforward for 

downstream applications (e.g. for Sea Surface Temperature (SST), surface albedo, clear sky 

radiance and NDVI vegetation index retrievals) meaning that all cloudy pixels should be 

discarded in the retrieval of the actual parameter. However, the drawback is that no, or very 

limited, information about the uncertainty in the cloud screening is generally available with 

these methods. Consequently, the error characteristics are generally unknown even if internal 

parameter-specific algorithm uncertainties may be known. Furthermore, various cloud masks 

have generally been defined aiming for different purposes and applications. Consequently, the 

performance may vary considerably from method to method regarding whether the cloud 

screening is executed in a clear conservative way (i.e., defining clear pixels with high 

confidence) or in a cloud conservative way (i.e., defining cloudy pixels with high confidence). 

Instead, the desire to define a more flexible cloud mask, suitable for any (or at least most) 

downstream applications, has become increasingly important. Such a cloud mask can either 

be expressed as a cloud index (as suggested by Khlopenkov and Thrishchenko, 2007) or a 

cloud probability (Merchant et al., 2005) meaning that any user should be able to define the 

most suitable mode of operation. In other words, it could be used anywhere in the range from 

the clear conservative mode to the cloud conservative mode by just changing the tolerance 

level of the required cloud probabilities.  

Although statistical and probabilistic (Bayesian) theory has been well established for decades 

(or even centuries), a problem has been to find appropriate observational references to 

represent the true global cloud occurrence from which a firm statistical cloud distribution 

database can be built. However, with the 2006 launch of the Cloud-Aerosol Lidar with 

Orthogonal Polarization (CALIOP) onboard the Cloud-Aerosol Lidar and Infrared Pathfinder 

Satellite Observations (CALIPSO) satellite, the situation has improved considerably. CALIOP 

offers global cloud observations with higher detection sensitivity than any other passive 

instrument (Winker et al., 2009). Furthermore, observations can be matched simultaneously in 

time (however, restricted to certain conditions) to observations by current operational AVHRR 

sensors. This has triggered numerous studies examining AVHRR-based cloud detection 

methods in detail (e.g., Karlsson and Dybbroe, 2010, Karlsson and Johansson, 2013 and 

Stengel et al., 2014). It has also paved the way for more systematic attempts to provide cloud 

probabilities rather than fixed cloud masks (Heidinger et al., 2012, and Musial et al., 2014), 

and the CMA-prob development described here is another example of this. Recently also 

improved versions of the CALIOP cloud datasets have been utilised for in-depth studies of the 

cloud detection limits for methods based on AVHRR data (Karlsson et al., 2018). Their 

findings and their tools have been important for defining the final concept of the CMA-prob 

methodology (further outlined in Section 3.6 and 3.7).      

3.2 Bayesian theory 

Let us first recapitulate some fundamentals of the probabilistic statistical theory. The theory is 

based on the pioneering work by Thomas Bayes who, already in 1763, formulated his famous 
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theorem (nowadays referred to as Bayes’ Theorem) for estimation of the posteriori probability 

of an event as a function of likelihoods (conditional probabilities) and a priori probabilities of 

other events. In the context of analysis of radiance feature vectors measured by satellite 

sensors, we may express Bayes’ Theorem as follows: If F is a vector of satellite radiances or 

image features (e.g., brightness temperature differences or reflectances), we may denote the 

posteriori conditional probability that it is cloudy when F is given as P(cloudy|F). In the same 

sense, we may denote the conditional probability that vector F occurs given it is cloudy as 

P(F|cloudy). If also introducing the overall probability (climatological mean) that it is cloudy 

as 𝑃(𝑐𝑙𝑜𝑢𝑑𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and the overall probability that any given value of F occurs as P(F), we may 

write Bayes’ Theorem as follows: 

  

𝑃(𝑐𝑙𝑜𝑢𝑑𝑦|𝑭) =
𝑃(𝑐𝑙𝑜𝑢𝑑𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑃(𝑭|𝑐𝑙𝑜𝑢𝑑𝑦)

 𝑃(𝑭)
  

            (1)

  

Despite its simple form, the solution to Eq. 1 is not easy to find in a situation with 

multispectral measurements (i.e., when the dimension of F is large). The estimation of 

parameters on the right hand side of Eq. 1 (especially P(F|cloudy)) becomes increasingly 

difficult the more image features that are chosen.  It then requires extraction from very large 

statistical training datasets to fully describe the dependence on individual image features and, 

in addition, also the effect of their mutual correlation. What complicates things even further is 

that even with one specific realisation of feature vector F, probabilities may differ depending 

on different environmental situations (e.g. if the pixel measurement is made in winter or in 

summer, over land or over ocean, in mountainous terrain or over desert, etc.). Thus, the 

training process needs to take into account additional ancillary information for a correct 

description of the environmental conditions.  

 

To reduce complexity of the problem some approximations may be utilised. One approach 

could be the entirely empirical approach of estimating P(cloudy|F) directly from predefined 

Lookup Tables composed during training with some stratification based on ancillary data. 

Such a method has been demonstrated by Musial et al. (2014). Alternatively, some 

simplifications and approximations could be made to Eq. 1. One such simplification is 

denoted The Naïve Bayesian approach, and this is used for the CMA-prob method.  

3.3 The CMA-prob Naïve Bayesian approach 

If assuming that individual image feature components fi in F are all independent (i.e., image 

features are uncorrelated), a simplification is possible so that individual probabilities may 

now be multiplied to get the total probability, following the fundamental statistical rule for 

“Compound Probability of Independent Events”. Thus, Eq. 1 reduces to 

 

𝑃(𝑐𝑙𝑜𝑢𝑑𝑦|𝑭) =
𝑃(𝑐𝑙𝑜𝑢𝑑𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∏ 𝑃(𝑓𝑖|𝑐𝑙𝑜𝑢𝑑𝑦)𝑖

𝑃(𝑭)
  

           (2) 

This approximation of Bayes’ Theorem is denoted the Naïve Bayesian approximation.  

The problem has now been reduced to estimating individual probabilities 𝑃(𝑓𝑖|𝑐𝑙𝑜𝑢𝑑𝑦) and 

then simply multiplying them. However, it must be emphasized that even if we have achieved 
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a very simple equation for calculation of the probabilities, the big scientific challenge lies in 

defining and estimating the conditional probabilities on the right-hand side of the equation. 

This includes the very fundamental choice of appropriate image features fi. These must be 

chosen in an optimal way, with each individual feature having documented capability to 

provide essential information about cloud occurrence. The following sub-sections will 

describe the methodology used and the choice of optimal image feature components fi . 

We notice also that there must be a mutual inter-dependence between 𝑃(𝑓𝑖|𝑐𝑙𝑜𝑢𝑑𝑦)  and 

𝑃(𝑐𝑙𝑜𝑢𝑑𝑦|𝑓𝑖). More clearly, if knowing the conditional probability that it is cloudy given a 

certain image feature value, we can also calculate it the other way around from the same 

statistical training dataset (provided that both absolute and relative frequencies of cloud 

occurrences are stored). This fact will be utilised here when defining the method. It is often 

more practical and easier to understand results for individual image features if compiling 

statistical distributions of 𝑃(𝑐𝑙𝑜𝑢𝑑𝑦|𝑓𝑖). It also provides a natural link to development efforts 

trying to find optimal thresholds in multispectral thresholding schemes like the standard CMA 

method in the PPS cloud processing package.  Remaining factors on the right hand side of Eq. 

2 may also be calculated from training data. An estimation of the mean cloud occurrence 

𝑃(𝑐𝑙𝑜𝑢𝑑𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅) is possible and the factor P(F) may be estimated by summing contributions from 

both cloudy and clear cases and then compute the overall frequency for which any particular 

realisation of vector F occurs. 

The Naïve Bayesian approximation has been successfully applied to many scientific 

applications (e.g., Kossin and Sitkowski, 2009) and it has also recently been applied to the 

AVHRR cloud screening problem (Heidinger et al., 2012). The main difference between 

CMA-prob and the latter method lies in the choice of image features and the used ancillary 

information.  

3.4 Estimating conditional cloud probabilities from CALIPSO measurements 

Having access to a system that can match and co-locate CALIPSO/CALIOP and 

NOAA/METOP AVHRR measurements makes it relatively straight-forward and simple to 

estimate conditional cloud probabilities, i.e. the frequency that it is cloudy at a certain image 

feature value 𝑃(𝑐𝑙𝑜𝑢𝑑𝑦|𝑓𝑖). However, as previously mentioned, this should only be done by 

using some restrictions on e.g. illumination conditions and the geographical coverage in order 

to avoid too broad distributions and distributions with a limited dynamical range of 

probabilities. If these restrictions on not considered, the final ability to separate cloudy from 

cloud-free radiances would be reduced (i.e., too often give cloud probabilities close to 50 %). 

Figure 3-1 shows the estimated cloud probabilities as a function of the AVHRR visible 

reflectances from the 0.6 µm channel over tropical ocean surfaces (left panel) and over high-

latitude homogeneous surfaces with permanent snow-cover (right panel). The distinction 

between low- and high latitudes is made at +/- 23.5º latitude and homogeneous surfaces are 

determined by applying a threshold of the local (11x11 pixels) variance in the digital elevation 

map (see RD 1). Information on snow cover is taken from NWP or Reanalysis datasets 

depending on whether results are derived for Nowcasting or for Climate applications. In 

Figure 3-1 snow information is taken from ERA-Interim data. The reference CALIPSO results 

are original CALIOP cloud masks (CLAY product version 4.1). It should also be mentioned 

that daytime conditions in Figure 3-1 are valid for solar zenith angles below 80 degrees.  
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Figure 3-1 Cloud probabilities estimated from global CALIPSO-CALIOP cloud data in the 

period 2006-2015 as a function of AVHRR 0.6 µm visible reflectances (Feature-Naïve in 

%, denoted Rvis). Left: Results over Tropical ocean surfaces. Right: Results over High 

Latitude surfaces with permanent snow-cover. 

From Figure 3-1 we conclude that cloud probabilities increase rapidly with reflectance over a 

very dark surface such as the ice-free ocean. Probabilities exceed 50 % already at a very low 

reflectance value (at approximately 5 % reflectance) and reach above the 80 % level at 

approximately 12 % reflectance. Thus, conditions for cloud-screening appear almost ideal. 

This is not the case for the snow-covered ground pixels in Figure 3-1 (right). Here, it is 

difficult to arrive at a robust, unique reflectance value where cloud probability exceeds 50 % 

(which would be needed for this image feature to be useful for cloud screening purposes). 

This occurs only for moderate to large reflectance values (30-70 % and above 90 %. For the 

inter-mediate region of high reflectances probabilities are actually well below 50 % and even 

down to 30 % for reflectivities between 85 % and 90 %. The reduced probability, especially in 

the interval 70-90 %, means that cloud-free snow surfaces have dominantly high reflectances 

in this interval. Consequently, cloud-free conditions are more likely to occur than cloudy 

conditions in this reflectance interval. We also notice that zero reflectances are never reached 

over these bright surfaces. Also, the small increase in cloud probabilities at low reflectances 

are likely to be caused by shadowing effects (i.e., cloud shadows on lower altitude clouds) or 

by very thin clouds observed at high solar zenith angles.    

 

A similar situation is seen over the same surfaces for the infrared brightness temperature 

difference of the 11 µm channel with regard to the surface skin temperature (Figure 3-2, 

difference denoted Tirdiff). In this figure, positive values mean that measured brightness 

temperatures are colder than the surface temperature. Very good separability conditions are 

seen over tropical ocean surfaces, while they are problematic over snow-covered surfaces. 

Notice in particular the effect of near-surface temperature inversions (e.g., for negative 

temperature differences in Fig. 3-2 meaning that measurements are warmer than the surface 

temperature). We notice that clouds which are warmer than the surface may occur over 

tropical ocean (e.g., a small fraction of marine stratocumulus) as well as over snow-covered 

surfaces. However, such clouds occur much more frequently over snow-covered surfaces and 

while the temperature difference is generally small over ocean it is generally much larger over  



CM SAF 
NWC SAF 

 
Algorithm Theoretical Basis Document 

for Cloud Probability product 

 
Doc. No.:
 NWC/CDOP3/PPS/SCI/ATBD/CloudProbability 
Issue: 1.0 
Date: 13.12.2018 

 

14 

 

Figure 3-2 Cloud probabilities estimated from CALIPSO-CALIOP cloud data in the period 

2006-2015 as a function of the temperature difference between the ERA-Interim (Dee et 

al., 2011) surface skin reference temperature and the AVHRR 11 µm brightness 

temperature (Feature_Naive in K, denoted Tirdiff). Left: Results over tropical ocean 

surfaces during day. Right: Results over High Latitude snow-covered surfaces during day. 

 

Figure 3-3 Cloud probabilities estimated from CALIPSO-CALIOP cloud data in the period 

2006-2015 as a function temperature difference between the ERA-Interim (Dee et al., 2011) 

surface skin reference temperature and the AVHRR 11 µm brightness temperature 

(Feature_Naive in K, denoted Tirdiff). Results are valid over High Latitude snow-covered 

surfaces during night and with strong near-surface inversions. 

snow-covered surfaces. The latter surfaces are dominated by cold and highly elevated surfaces 

in Antarctica and over Greenland.  It is clear that the use of a single threshold at e.g. 5 K is 

capable of detecting the vast majority of clouds over tropical ocean while the same threshold 

applied over snow-covered surfaces will miss a large fraction of all existing clouds.  

 

Statistics from situations with very strong near-surface inversions (i.e., when surface 

temperatures are colder than temperatures in the 950 hPa level) over snow-covered surfaces in 
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Fig. 3.3 are also interesting. In such situations, using this temperature difference feature for 

cloud screening is even worse. Clouds may here occur for any measured temperature 

difference but with probabilities which are not significantly different from 50 %. Only for 

clouds which are 20 K colder than the surface (generally medium- and high-level clouds) or 

possibly also clouds which are 5-15 K warmer than the surface (low-level inversion clouds) 

we get high enough cloud probabilities to detect clouds with certainty. We also notice a 

minimum in cloud probabilities at about 10 K instead of near 0 K which would be the 

anticipated value, i.e. a pixel that is neither warmer nor colder than the surface should be 

generally cloud-free. This indicates that the ERA-Interim surface temperature reference 

probably has a warm bias, i.e., that surface temperature inversions are probably stronger than 

ERA-Interim is capable of showing. This is supported by, e.g., long-time experiences of a 

warm bias for ECMWF-forecasted minimum 2-meter temperatures in boreal forest regions at 

high latitudes during winter (Hogan et al., 2017). Also the few cases of extremely large 

positive differences in Fig. 3.3 (up to 60 K) may be linked to errors in the surface temperature 

analysis but it can also come from navigation errors in coastal areas with steep orography. 

 

We conclude from Figs. 3-1 to 3-3 that conditions for efficient cloud screening may be 

drastically different depending on the geographic location and the prevailing illumination 

conditions (i.e., day, night or twilight). This is one of the explanations for the very successful 

performance of simple bi-spectral VIS-IR cloud screening methods at low- to moderate 

latitudes (best exemplified by the results derived mainly from geostationary satellite data of 

the International Satellite Cloud Climatological Project – ISCCP – see Rossow et al., 1999 

and Young et al., 2018). On the other hand, it also clearly illustrates potential serious 

limitations for the same methods over high latitudes and over the polar regions (as highlighted 

by Karlsson and Devasthale, 2018). 

3.5 Definition of a basic sub-set of constrained AVHRR image features   

The Naïve Bayesian CMA-prob method utilises estimated conditional cloud probabilities 

(introduced in the previous section) for a sub-set of image features. However, rather than to 

define them in their purest form (as illustrated in Figs 3-1 – 3-3) we have chosen to define 

them linked to pre-calculated dynamic image feature thresholds used by the Polar Platform 

System cloud software package (PPS, see Dybbroe et al, 2005a, 2005b) and in this particular 

case version PPS version 2018   [RD 1]. The reason for linking image features to pre-

calculated thresholds is that the latter are defined across a wide range of environmental 

conditions (see Dybbroe et al., 2005a for more details). This concerns image feature 

variability due to the following factors: Solar and satellite geometry (direct angular 

dependence and dependence on scattering angles), prevailing atmospheric profiles of 

temperature and humidity, climatological ozone and aerosol amounts, topography and land 

cover, and spectral surface emissivities. Without considerating these factors when training the 

probabilistic classifier, the results risk being imprecise and most likely misleading. We claim 

that it is better to piggy-back on existing prepared threshold information, based on knowledge 

built on many years of cloud thresholding experience, than to try to train a classifier from 

scratch as a function of all the mentioned factors. The latter would require the creation of very 

large dimension Look-up Tables of statistical relations of cloudiness and image features and 

their respective dependencies on a wide range of environmental factors. 
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Figure 3-4 Cloud probabilities estimated from CALIPSO-CALIOP cloud data in the period 

2006-2015 as a function of AVHRR temperature differences between AVHRR channel 4 

and 5 (denoted Feature in the plots) over Tropical ocean surfaces during night. Left panel 

shows results in original form and right panel if plotting results as a function of 

temperature differences related to PPS thresholds (consisting of dynamic threshold plus a 

tuning offset value).   

To illustrate the usefulness of this concept we consider one of the most commonly used 

AVHRR image features for detecting thin cirrus clouds (originally suggested by Inoue, 1987): 

the brightness temperature difference between AVHRR channels 4 and 5 at 11 µm and 12 µm, 

respectively. The main principle used for Cirrus detection is normally that the cloud 

transmissivity for thin ice clouds is higher in AVHRR channel 4 than in AVHRR channel 5, 

thus creating a positive brightness temperature difference between AVHRR channels 4 and 5. 

Figure 3-4 shows the cloud probabilities as a function of this temperature difference (Fig. 3-4, 

left) but also as a function of the temperature difference relative to the corresponding PPS 

threshold (Fig. 3-4, right). 

 

In its original form (Fig. 3-4, left), we have two peaks in cloud occurrence where one is for 

differences close to zero, and the other for values exceeding approximately 4 K. Thus, the 

area with lower cloud frequencies between the peaks spans an interval of almost 4 K. In the 

alternative formulation (Fig. 3-4, right) results are much more distinctly organised, the 

interval with lower frequencies is reduced to only 2 K  and the range of probability values 

have been enlarged (which is favourable for the probabilistic classification process). The latter 

circumstance is especially true for the leftmost part of the distribution. We interpret this as 

primarily an effect of being able to take into account the natural cloud-free contribution from 

atmospheric water vapour emission in the split-window channels. This emission is also able to 

create a discernible temperature difference in the absence of cirrus clouds explaining the 

broader and less decisive probability distribution in its original form for temperature 

differences below approximately 4 K. Resulting distributions after the coordinate change now 

clearly separates thin cirrus clouds to the right in the plot from the opaque clouds in the left 

part of the plot with cloud-free cases now concentrated around the changed x-coordinate value 

of around –1 K.  
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Table 3-1 Spectral channels of the Advanced Very High Resolution Radiometer (AVHRR). 

Three different versions of the instrument are described as well as corresponding 

satellites. 

Channel  

Number  

Wavelength 

(µm) 

AVHRR/1 

Tiros-N, 

NOAA-6,8,10 

Wavelength 

(µm) 

AVHRR/2 

NOAA-7,9,11,12,14 

Wavelength 

(µm) 

AVHRR/3 

NOAA-15,16,17,18 

NOAA-19, Metop-A 

Metop-B 

1 

2 

3A 

3B 

4 

5 

0.58-0.68 

0.725-1.10 

- 

3.55-3.93 

10.50-11.50 

Channel 4 repeated     

0.58-0.68 

0.725-1.10 

- 

3.55-3.93 

10.50-11.50 

11.5-12.5 

0.58-0.68 

0.725-1.10 

1.58-1.64 

3.55-3.93 

10.50-11.50 

11.5-12.5 

 

 

Table 3-2 Used AVHRR image features for day illumination probabilistic cloud masking. 

Feature name Definition Main cloud detection ability 

 

Rvis 

 

 

Over land: AVHRR channel 1 TOA 

reflectances minus PPS thresholds 

 

Over ocean: AVHRR channel 2 TOA  

reflectances minus PPS thresholds 

 

 

Identification of bright clouds over dark 

Earth surfaces 

 

Tirdiff 

 

 

AVHRR channel 4 brightness 

temperatures minus ERA-Interim 

surface skin temperatures 

minus PPS thresholds 

  

 

Identification of clouds which are 

significantly colder than the Earth surface 

 

Rswir_3a 

(morning orbit 

AVHRR/3) 

 

 

AVHRR channel 3A reflectances 

divided by AVHRR channel 1 

reflectances 

Identification of clouds with significant 

reflection in the visible near-infrared 

infrared region (in particular water clouds 

and thick multi-layered ice clouds over 

snow-covered surfaces) 

 

Rvis37 

(afternoon orbit all 

AVHRRs and morning 

orbit AVHRR/2) 

 

 

AVHRR channel 3B reflectances 

minus PPS thresholds 

 

 

Identification of clouds with significant 

reflection in the short-wave infrared region 

(water clouds and thick multi-layered ice 

clouds 
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 With this background we now list in Tab. 3-2 and Tab. 3-3 a set of 8 constrained image 

features (related to original AVHRR channels described in Tab. 3-1) that will be used for the 

definition of the CMA-prob probabilistic cloud mask estimates. Four image features are 

selected for two scene categories: day (solar zenith angle [SZA] below 80º); Tab. 3-2 and 

night (SZA ≥ 89º; Tab. 3-3). For the twilight case (80º ≤ SZA < 89º) either the day or night 

approach is used depending on if non-zero reflectances are detected in AVHRR channel 1. 

Only one common feature (Tirdiff) is used both day and night but the underlying statistics 

achieved during the training of the method is separated into day and night categories. In order 

to account for geographical and topographical differences, we defined 14 geographical 

regions over which we trained the probabilistic classifiers. These regions are listed in Tab. 3-

4. Ice cover information is taken from OSI SAF ice concentration data and snow information 

(snow depth) is taken from ERA-Interim re-analyses. The land-sea mask is taken from USGS 

landuse dataset and the labelling of whether or not the surface is dry is based on land 

emissivity climatologies (see RD 1 for more details on the use of ancillary datasets). The 

classifier was trained using the CALIPSO-CALIOP cloud product, denoted Cloud and 

Aerosol Layer Information product version 4.01. In summary, we trained the probabilistic 

classifier for 14 different surface regions, 2 illumination conditions and 4 AVHRR feature 

tests for each illumination class yielding a total of 112 unique, individual probabilistic 

estimates (probability distribution functions, PDF). 

 

Table 3-3 Used transformed AVHRR image features for night illumination probabilistic cloud 

masking. 

Feature name Definition Main cloud detection ability 

 

Tirdiff 

 

 

AVHRR channel 4 brightness 

temperatures minus ERA-Interim 

surface skin temperatures 

minus PPS thresholds 

  

 

Identification of clouds which are 

significantly colder than the Earth surface 

 

Tcidiff 

 

 

AVHRR channel 4 brightness 

temperatures minus AVHRR channel 5 

brightness temperatures  

minus PPS thresholds 

  

 

Identification of thin cirrus clouds  

 

Twdiff 

 

 

(AVHRR channel 3b brightness 

temperatures minus AVHRR channel 4 

brightness temperatures) 

minus PPS thresholds 

 

 

Identification of water clouds 

 

Texture_night 

 

 

Over land: Not used (surface variability 

generally too large)! 

 

Over ocean: (Sum of local 3x3 pixel 

variances for  

AVHRR channel 4 brightness 

temperatures and 

AVHRR channel 3b and 5 brightness 

temperature differences) 

minus PPS thresholds    

 

Identification of fractional or broken clouds 

over ocean 
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Table 3-4 Geographical regions used when training the probabilistic classifier. Notice that 

areas with ice-cover are further sub-divided into areas with broken ice (marginal ice zone) 

and areas with 100 % ice cover. Similarly, snow covered surfaces are further subdivided 

into areas with seasonal and permanent snow cover. Consequently, the total number of 

defined regions or surfaces is 14. 

Geographical region Definition 

 

Polar ice-covered ocean 

 

 

Ice-covered ocean based on OSI SAF ice concentration 

data  

 

 

High-latitude ocean 

 

 

Ice-free ocean at latitudes higher than 23.5° 

  

 

Low-latitude ocean 

 

 

Ocean at latitudes lower than 23.5° 

 

 

High-latitude snow –covered 

mountains 

 

 

Regions with high topography variability and with snow-

cover (from ERA-Interim) at latitudes higher than 23.5°    

 

High-latitude snow-free mountains 

 

Regions with high topography variability without snow-

cover at latitudes higher than 23.5°    

 

 

High-latitude snow-covered land 

 

Snow-covered land with low topography variability at 

latitudes higher than 23.5° 

 

 

High-latitude snow-free land 

 

 

Snow-free land with low topography variability and with 

vegetation cover (none-dry) at latitudes higher than 23.5° 

 

 

Dry homogeneous land regions  

 

 

Land areas with low topography variability and without 

homogeneous vegetation at latitudes lower than 23.5° 

 

Dry mountainous regions 

 

Land areas with high topography variability and without 

homogeneous vegetation at latitudes lower than 23.5 

 

 

Low-latitude homogeneous 

vegetated regions 

 

 

Vegetated land areas with low topography variability and 

without homogeneous vegetation at latitudes lower than 

23.5at latitudes lower than 23.5° 

 

Low-latitude mountain regions with 

vegetation 

 

 

Vegetated mountain regions with high topography 

variability and with vegetation at latitudes lower than 

23.5° 
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3.6 Training the classifier using CALIPSO-CALIOP cloud data with dependencies on 

CALIOP-estimated cloud optical thicknesses 

To develop the CMA-prob classifier, we have taken advantage of the previously reported 

studies based on collocated NOAA/METOP AVHRR and CALIPSO orbits as described by 

Karlsson and Johansson (2013) and Karlsson and Håkansson (2018).  In particular, the 

extension of the matchup database resulting from the study by Karlsson and Håkansson 

(2018) has been very important here.  Some example results from this extended collocated 

dataset over 10 years (covering the period 2006-2015) have already been shown in the 

previous section. However, some important and necessary restrictions to the utilised 

information have been applied during the training process for being able to construct a 

probabilistic classifier capable of providing reasonable results.  

 

A great advantage of the CALIPSO-CALIOP cloud products is their superior sensitivity for 

cloud detection compared to corresponding conditions for passive data, such as from the 

AVHRR sensor. However, this is also a problem when using this information as the basis for a 

statistical training of a probabilistic cloud masking method. More clearly, there is a risk for 

“over-training”, i.e., that we force the method to try to detect clouds that are theoretically 

impossible to detect from AVHRR sensor data. As a result, the probabilistic cloud-screening 

method would then risk systematically creating artificial clouds in truly cloud-free areas since 

the cloud-free signal cannot be confidently separated from the cloudy signal for e.g., sub-

visible cirrus clouds. Consequently, we need to find a way to restrict the used CALIOP-based 

cloud mask in the training process to include only those clouds we believe are potentially 

discernible in AVHRR images. In other words, we need to define the AVHRR cloud detection 

limit as accurately as possible.  

 

This task can also be formulated as that we need to find the proper restricted CALIPSO cloud 

mask that is most accurately reproduced by the AVHRR-based cloud masking method. This 

means that we have to filter out the thinnest CALIOP-detected clouds from the CALIOP 

cloud mask up to a certain limit or threshold in cloud optical thickness where we then can find 

the best resemblance with the AVHRR-derived cloud mask. This limit in optical cloud 

thickness can be denoted “Cloud Detection Sensitivity” for the method and has previously 

been introduced as a useful concept by Karlsson and Håkansson (2018). We will use this 

concept here in the training and definition of the CMAprob method.   

 

 

A practical solution to the desire of finding the optimal training of the method (according to 

the principles introduced above) can be found if also adding the following criterion: 

 

 A binary cloud mask created by thresholding the cloud probability at the 50 % 

 probability level should give maximum detection skill scores compared to a cloud 

mask derived by any other probability threshold. 

[1] 

 

This criterion is not only necessary for solving the training problem but it also means that 

potential users of the product are given a clear recommendation on how to use the cloud 

probability results. Also, the above criterion should ideally be valid at every geographic 

location. A user can definitely adjust the threshold making classification results more clear-

conservative (lowering the threshold) or more cloud-conservative (raising the threshold). 

However, the default threshold value at 50 % would be a reasonable starting point since the 
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user would then know that by using this threshold the detection skill score should 

theoretically be maximized. For any other threshold the rate of misclassifications will 

increase.  

 

The most natural detection skill score to use in this context is the Hit Rate which simply is 

described as the percentage of correct cloudy and clear predictions with respect to the total 

number of predictions.  

 

To illustrate how we can use this skill score in the training process we can study Fig. 3-5 

taken from Karlsson and Johansson (2013). They introduced a plot on how the Hit Rate and 

other skill scores (in this example the Kuipers Skill Score) could vary as a function of the 

filtered cloud optical thickness. Basically, this shows how well the results of a specific 

method (in Fig. 3-5 cloud masks produced for the CLARA-A1 climate data record) agree with 

restricted (or original) CALIOP cloud masks. Notice that filtering does not mean that data is 

removed from the validation dataset. Instead, clouds with optical thicknesses below the 

filtered cloud optical thickness value are interpreted as being non-existent (i.e., changed into 

cloud-free).  

 

 

Figure 3-5 Hitrate and Kuipers skill scores as a function of filtered CALIOP cloud masks 

(cloud optical thickness limits) for CLARA-A1/PPS 2014 cloud masks. Results derived 

from 99 collocated NOAA-18 and CALIPSO-CALIOP cloud masks in the period 2006-

2009. (From Karlsson and Johansson, 2013). 

Figure 3-5 shows how skill scores first improves if filtering the thinnest (mostly non-

detectable) clouds from the validation dataset but then decreases again after reaching a certain 

value of the filtered optical thickness. The decrease is explained by the fact that more 

correctly detected CALIOP-observed clouds are here converted to cloud-free (lowering the 

Hit rate) compared to how many missed clouds are converted into cloud-free (raising the Hit 

rate). At the maximum value for the Hit Rate we get the best fit with a restricted filtered 

CALIOP cloud mask. In this example this maximum occurs for a filtered cloud optical 

thickness value of approximately 0.2 (or slightly lower for the Kuipers score). This optimal 

filtered value is identical to the Cloud Detecting Sensitivity parameter introduced by Karlsson 
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and Håkansson (2018). They calculated it for all locations on the globe when validating 

results of the CLARA-A2 climate data record (Karlsson et al., 2016). 

 

An important feature of the Hit Rate curve in Fig 3-5 is that it possesses important 

information about the probability of detecting a cloud with a certain optical thickness. If 

calculating the Hit Rate gradient from the values at finite intervals of filtered cloud optical 

thicknesses, we can deduce where the probability of detection reaches 50 %. More clearly, it 

means that, when the gradient is zero at the point of maximum Hit Rate, we have reached the 

situation when the probability of detection of clouds is exactly 50 %. If the Hit Rate stays 

constant after filtering (i.e., converting CALIOP clouds to cloud-free) a certain amount of 

clouds, it means that 50 % of those clouds were initially correctly classified. For intervals 

with lower cloud optical thicknesses the probability of detection is always lower and on the 

other side of the Hit Rate maximum it is always higher. If we imagine that our finite intervals 

(shown in Figure 3-5 as the distance between individual values on the curve) decrease 

towards infinitesimal widths we can then also say that we have a probability of detection of 

50 % for cloud layers with an optical thickness of exactly this filtered cloud optical thickness 

value. We will utilise this property in the training process for CMA-prob since it has a direct 

link to criterion [1] above. 

 

To find a solution which optimizes our cloud probability results, i.e., which gives us as small 

Cloud Detection Sensitivity values as possible everywhere on the globe, we need to add 

another level of complexity. The trick is to first do repeated training of the classifier using the 

full range of restricted cloud masks, i.e. full range of filtered cloud optical thicknesses. In the 

next step we then select the training statistics valid for that particular restricted cloud mask 

with a certain filtered optical thickness which coincides with the position of the Cloud 

Detection Sensitivity (i.e., position for maximum Hit Rate). Then we can be sure that the 50 

% probability of detection is valid for this particular Cloud Detection Sensitivity which means 

that we are fulfilling criterion [1] above. 

 

To explain this better we can consider two cases:  

 

1. Hit rate peaks at smaller optical thicknesses than the filtered value used for the 

restricted cloud mask during training.  

2. Hit rate peaks at larger optical thicknesses than the filtered value used during training.  

 

Both cases mean that we are actually not succeeding very well in reproducing the restricted 

cloud mask that was used during training. The first case means that the used training statistics 

appears to be valid also to some extent for clouds with smaller optical thicknesses. Therefore, 

we should try to use a lower filtered optical thickness value during training. The second case 

means that a significant portion of the clouds are misclassified (missed) and we should 

therefore use a larger value for the optical thickness threshold of the restricted cloud mask.  

 

In practise, this means that we have to carry out this evaluation separately for every defined 

surface or region according to Tab. 3-4. In this way we will get different optimal Cloud 

Detection Sensitivities for each surface or region. This will then reflect the different 

separabilities of cloudy and cloud-free conditions existing globally as a function of the 

underlying surface characteristics. Consequently, even if the 50 % cloud probability in the end 

result will mean the same everywhere (as a basis for a binary cloud mask), the probability is 

with respect to different kind of clouds with different layer optical thicknesses which will vary 
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with surface and region. The ambition is that by this method we will be able to identify clouds 

which are radiatively significant, i.e., being identified for having a sufficient contrast against 

the surface for each region. If combining all these results globally we would then get 

improved results compared to the case when we just unconditionally train our method against 

the original and unrestricted CALIOP cloud mask.  To test if this is finally achieved, we have 

in the end to prove that overall validation results when validating against the unrestricted 

CALIOP cloud mask is better than results based on training exclusively using the original 

cloud mask. The latter case should give a higher rate of misclassifications if the concept is 

working.  

3.7 Resulting sets of optimal training statistics for different Earth surfaces 

The collected training dataset spans the period 2006-2015 and provides a reasonable global 

coverage over all seasons during that period. To notice, however, is that one year (2010) has 

been excluded from the training dataset to constitute an independent validation dataset. The 

training dataset is collected from almost 3000 NOAA-18 and NOAA-19 AVHRR Global Area 

Coverage (GAC) orbits and CALIOP pixels/samples at approximately 5 km horizontal 

resolution. The CALIPSO-CALIOP Cloud Layer (CLAY) product version 4.01 has been used. 

A more detailed description of this product is given by Karlsson and Håkansson (2018).  The 

constrained training (i.e., image features now being related to PPS threshold information) is 

based on results from the PPS software version 2018 [RD 1]. This PPS version is highly 

advanced compared to the original method described by Dybbroe et al. (2005). The main new 

features of the method concern adaptations to global processing (e.g., over desert and Polar 

Regions) and a systematic use of prescribed MODIS-derived surface emissivity information.  

 

Figures 3-6 – 3-9 below illustrate the selection of optimal training datasets over different 

surfaces and regions. Hitrate scores are here plotted by different curves representing training 

constellations using different restricted CALIOP cloud masks (explained in the legend).  

Notice that those training constellations giving highest cloud detection sensitivities (i.e., the 

capability to detect the thinnest cloud optical thicknesses) and which fulfil criterion [1] above 

are highlighted by thicker lines (in both figure and legend). In Figure 3-6 we study conditions 

for the surface having the best overall results of all surfaces globally, namely ice-free ocean 

surfaces over the extra-tropics. We deduce that over these surfaces we can use training data 

from a slightly restricted CALIOP cloud mask (-filtering at 0.05) during day and from the 

unrestricted original CALIOP cloud mask during night. Thus, the cloud detection sensitivity 

will then be 0.05 or even smaller over this surface.  
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Figure 3-6 Hit Rate as a function of filtered cloud optical thicknesses of the CALIOP cloud 

mask for different training scenarios (coloured curves) over ice free extratropical ocean 

during day (left) and night (right). The coloured curves describe results based on different 

restricted CALIOP cloud masks used when training. Thick lines denote possible solutions 

fulfilling the criterion that Hit Rate should be maximized for the same filtered optical 

thickness as was used during training.  

Conditions are more problematic over snow-free extratropical land surfaces as shown in Fig. 

3.7. Best results are here found during daytime for a filtered cloud optical thickness of 0.6. 

Also solutions for larger thicknesses are proposed but highest Hit Rates are given for the 

lowest of the suggested solutions which should be chosen. Night time results are less decisive 

since we cannot find an obvious case where the Hit rate peak coincides with a particular 

trained filtered optical thickness. But the highest scores are still given for almost the same 

chosen filtered optical thickness as for daytime conditions and we decided to use this value 

also at night. It should be noted that the perfect solution at night maybe is not covered by the 

different training constellations we have tested. A finer resolution of restricted CALIOP 

masks could perhaps have suggested a cloud optical thickness value of 0.65.  

 

Figure 3-7 Same as Figure 3-6 but for snow-free extratropical land surfaces during day (left) 

and night (right).  

Looking at results over well-known problematic areas, such as areas with permanent snow-

cover (Greenland and Antarctica) in Fig. 3-8, the situation becomes less clear. Here it is 

difficult to find any clear guidance on what solution to choose when training. No clear peaks 
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in Hit rate seem to coincide with the chosen filtering level used when training. This indicates 

that, despite having seemingly homogeneous surface conditions, the true variability in results 

is very large over those surfaces. This can also be explained by existing contradicting results 

from different image features. If the necessary contrast needed for good cloud discrimination 

is found in one feature the situation can be completely the opposite for another image feature. 

This is a drawback of the Naïve Bayesian method, i.e. due to the multiplication of individual 

probabilities a near-zero value for one image feature will be able to compensate or neutralise 

results from other features.  

 

The problem with the results in Fig. 3-8 is that no distinct peak can be found coinciding with 

the trained filtered cloud optical thickness. For daytime conditions a preference for using a 

cloud detection sensitivity of about 1.0 can be seen but it is a bit alarming to notice that Hit 

Rates for this value are not clearly decreasing for larger filtered optical thicknesses. This 

means that also for higher optical thicknesses almost 50% of all clouds will be missed. A 

better solution would be to choose a lower trained optical thickness value which is having a 

distinct peak but at a somewhat lower Hit Rate value. A reasonable compromise could be to 

use the value 0.3. The peak in Hit rate is still reasonably high and a clear capability to detect 

clouds with larger optical thicknesses is retained.  

 

For night conditions in Fig. 3-8 (right), the results are even more confusing. At first sight a 

solution using the maximum filtered value of 5.0 is suggested. But in practice it means that 

we will never reach 50 % probability of detection for any value of the layer optical thickness 

in the studied interval since the curve for the filtered value of 5.0 is monotonically increasing 

over the full range of filtered optical thicknesses. There are, however, distinct peaks in Hit 

rate for other filtered optical thickness (e.g. in the range 0.2- 0.8) but then having much lower 

Hit Rates than what is indicted for the value 5.0 at the maximum filtering level. A 

compromise solution here could be to use the value 2.0 to acknowledge that situations should 

be more difficult than during daytime but not as extreme as suggested by the solution of using 

the value 5.0 for the restricted cloud mask. We conclude that over the most problematic 

surfaces we have to be careful using the general and idealized concept presented earlier since 

conditions are much more complex than over other Earth surfaces. To find the most optimally 

reproduced CALIOP cloud mask seems very difficult here which forces us to some 

compromise solutions. 

 

Figure 3-8 Same as Figure 3-6 but for homogeneous land surfaces with permanent snow-

cover during day (left) and night (right).  
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Finally, we will also take a closer look at dry surfaces with sparse vegetation in Figure 3-9. 

We notice generally very high Hit Rates during daytime but also that optimal detection 

capabilities are reached for slightly higher optical thickness values compared to results for 

extra-tropical land surfaces in Fig. 3-7. Filtered optical thickness values increase here to 0.9 

during day and similar (but less decisive) values during night. The observation that no clear 

solution can be found for the optimal cloud detection sensitivity during night probably 

indicates that conditions for desert surfaces are not as homogeneous and representative as 

initially assumed. The behaviour of the curves at night is very different compared to how it 

looks during day and over other surfaces. One reason for this could be the varying surface 

emissivities (influenced by both soil moisture conditions and surface material characteristics) 

in the infrared channels causing “cloud-like” temperature differences also in clear situations. 

Another reason could be that our reference surface skin temperatures from ERA-Interim do 

not capture minimum temperatures at night very well (which is also problematic for the polar 

winter surfaces described earlier in Fig. 3-8 right). However, the message is clear that the use 

of higher filtered optical thicknesses will yield improved results and less misclassifications. 

Thus, we can safely use the same value of the filtered optical thickness for training CMa-Prob 

as was selected for daytime conditions. 

 

 

Figure 3-9 Same as Fig. 3-6 but for dry land surfaces (dominated by deserts) with sparse 

vegetation during day (left) and night (right). 

We summarize the estimated optimal cloud detection sensitivities for all investigated surfaces 

in Tab. 3-5. The final statistics for the CMa-Prob classifier is compiled by choosing trained 

statistics for each optimal cloud detection sensitivity for each individual surface. For the  

 

Table 3-5 Estimated optimal Cloud Detection Sensitivies (i.e., lowest cloud layer optical 

thicknesses with probability of detection exceeding 50 %) for different Earth surfaces 

(defined in Table 3-4) and for different illumination categories. For these filtered optical 

thicknesses the best resemblance is achieved with the CALIOP cloud mask over different 

surfaces. Consequently, corresponding filtered CALIOP cloud masks are used to train the 

CMA-Prob classifier. 

SURFACE DESCRIPTION Surface id DAY NIGHT TWILIGHT 

Marginal sea ice at high latitudes G1 0.00 0.00 0.00 

Sea ice at high latitudes G2 0.10 1.00 0.50 
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Extra-tropical ice-free ocean G3 0.00 0.00 0.00 

Tropical ocean G4 0.10 0.10 0.10 

Dry homogeneous snow-free land G5 0.90 0.90 0.90 

Homogeneous, extra-tropical and 

snow-free land 
G6 0.60 0.60 0.60 

Homogeneous, extra-tropical land 

with seasonal snow 
G7 0.15 1.00 0.15 

Homogeneous extra-tropical land 

with permanent snow 
G8 0.30 2.00 1.00 

Rough, dry and snow-free land G9 0.30 2.00 1.00 

Rough, extra-tropical and snow-

free land 
G10 0.70 0.70 0.70 

Rough, extra-tropical land with 

seasonal snow 
G11 0.20 1.00 0.30 

Rough, extra-tropical land with 

permanent snow 
G12 0.30 2.00 1.00 

Homogeneous, tropical land with 

vegetation 
G13 0.20 0.10 0.20 

Rough, tropical land with 

vegetation 
G14 0.25 0.20 0.25 

 
twilight category in Table 3-5 the CMa-Prob classifier selects either night-time or daytime 

statistics depending on if a detectable reflection signal can be found in AVHRR channel 1 at 

0.6 micron. Thus, no specific twilight statistics is compiled but the used cloud detection 

sensitivity may still be different from the pure night and day case. 

 

4 Final implementation of CMa-Prob and some demonstrated results 

4.1 Demonstration of impact of using cloud detection sensitivity statistics instead of 

statistics based on original CALIOP cloud mask 

 

Some results from selecting training statistics differently over various Earth surfaces are 

illustrated in this sub-section for some image features. 

 

Figure 4-1 shows the achieved training statistics for the visible reflectance feature (Rvis in 

Tab.  3-2) over dry and homogeneous land surfaces (category G5 in Tab. 3-5). The left part of 

the figure shows the cloud probability distribution as a function of reflectance after training 

with the cloud detection sensitivity value 0.9 (according to Tab. 3-5). The right part shows 

statistics compiled using the original unfiltered CALIOP cloud mask. The latter shows that 

cloud occurrences are not negligible for low-to-moderate reflectivities even if the majority of 

clouds occur for higher reflectivities. However, after training against a restricted cloud mask, 

filtering clouds with optical thicknesses below 0.9, the cloud probabilities at low-to-moderate 

reflectivities are considerably reduced (Fig. 4-1 left). It means that some of the very thin 

clouds which previously were mixed up with the cloud-free reflectance are now treated as 

cloud-free cases. This improves the overall separability of cloudy and cloud-free cases. The 

peak of cloud occurrences seen at very low reflectances is most likely explained by shadows 

cast on other lower-level clouds.   
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Figure 4-1 Distribution of cloud occurrences (or cloud frequencies) as a function of the 

visible AVHRR reflectance at 0.6 micron over dry homogeneous surfaces (predominantly 

desert surfaces). Left: Statistics based on training with a CALIOP cloud mask filtered at 

optical thickness 0.9. Right:  Statistics based on training with the original unfiltered 

CALIOP cloud mask. 

Figure 4-2 shows the same type of results as in Fig. 4-1 but now for the reflectance in the 3.7 

micron channel (short-wave infrared). Again we can see how the removal of the thin clouds 

(i.e., meaning that we now interpret them as cloud-free) below optical thickness 0.9 increases 

the separability between cloudy and clear cases. Clouds are in this spectral region either 

weakly reflecting (ice clouds) or strongly reflecting (water clouds). The inter-mediate region 

in the figure (i.e., valid for reflectivites in the interval 15-35 %) is dominated by moderately 

reflecting desert surfaces. If not filtering out the thinnest clouds they are easily mixed up with 

the surface as seen by the non-zero cloud frequencies here. But after filtering, the risk of 

misclassifying (remaining) clouds is reduced. We repeat that by filtering out the thin clouds 

we reduce the capability to detect any of these clouds but on the other hand we will now 

minimise the risk of creating false clouds with more or less the same spectral signature. The 

use of the cloud detection sensitivity parameter for guiding us with the filtering procedure will 

guarantee that we gain more than we lose by this filtering procedure.  

 

 

 

Figure 4-2 Distribution of cloud occurrences (or cloud frequencies) as a function of the 

AVHRR reflectance at 3.7 micron (%) over dry homogeneous surfaces (predominantly 
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desert surfaces). Left: Statistics based on training with a CALIOP cloud mask filtered at 

optical thickness 0.9. Right:  Statistics based on training with the original unfiltered 

CALIOP cloud mask. 

A final example of the effect of filtering is shown in Fig. 4-3 for the absolutely most 

problematic cloud detection condition encountered for AVHRR data: night-time cloud 

detection over cold and snow-covered surfaces (e.g., polar night over Greenland and 

Antarctica). Fig. 4-3 shows conditions when strong surface temperature inversions are present 

which is defined as when the surface temperature is colder than the temperature in the 950 

hPa level. The figure shows the cloud probability as a function of the difference between the 

AVHRR brightness temperature at 11 micron and the surface temperature from ERA-Interim. 

The right part shows results when training against the unfiltered CALIOP cloud mask while 

the left part shows results when training against a CALIOP cloud mask filtered at optical 

thickness 2.0.  

 

It is clear that for unfiltered training the probability of cloudy conditions is high for almost all 

conditions, except for cases when the surface temperature is much colder than the measured 

11 micron brightness temperature (i.e., for large negative differences). However, probabilities 

are generally uncertain (i.e., close to 50 %) and only for restricted parts of the distribution do 

we find high and low probabilities which could contribute favourably to the cloud detection 

process. After filtering with a cloud optical thickness of 2.0, a large fraction of all clouds 

disappear (i.e., are now interpreted as cloud-free) and only clouds which are clearly colder 

than the ERA-Interim surface temperature remain with cloud probabilities clearly above 50 % 

(Fig. 4-3 left). It means that only optically thick and cold clouds are possible to detect with 

confidence over this surface type for this image feature.  

 

The unfiltered results (Fig. 4-3, right) indicate some skill in identifying also clouds which are 

warmer than the surface (e.g., “black stratus”) for temperature differences near -20 K. The 

probabilities for remaining clouds of this type after the filtering is still non-zero but generally 

lower than 50 %. Successful identification of these clouds now depend on if also cloud 

probabilities are high enough for the other two infrared image features ((Twdiff and Tcidiff in 

Tab. 3-3). For the black stratus clouds Twdiff is important since it is normally showing a 

negative temperature difference between AVHRR channels at 3.7 microns and 11 microns as 

opposed to clear areas and ice clouds (the latter showing a positive temperature difference). 

But for very cold situations this typical cloud feature becomes less reliable which is caused by 

the transition from pure water clouds at higher temperatures to mixed phase clouds at cold 

temperatures. In addition, increasing radiometric noise at the 3.7 micron channel (leading to 

random positive and negative Twdiff values) will further decrease the usefulness of the Twdiff 

feature. In conclusion, cloud detection capabilities in AVHRR data over cold surfaces during 

the polar night remains as the most challenging of tasks for any cloud detection scheme. 
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Figure 4-3 Night-time distribution of cloud occurrences (or cloud frequencies) as a function 

of the difference between the AVHRR brightness temperature at 11 micron and the surface 

temperature from ERA-Interim over permanently snow-covered surfaces. These results 

were collected for situations with strong surface temperature inversions. Left: Statistics 

based on training with a CALIOP cloud mask filtered at optical thickness 2.0. Right:  

Statistics based on training with the original unfiltered CALIOP cloud mask. 

4.2 Treatment of data from satellites with the 1.6 micron channel replacing the 3.7 

micron channel 

Table 3-2 lists also the image feature Rswir_3a which is based on the reflectivity in the 

AVHRR channel at 1.6 microns divided by corresponding reflectivities in the AVHRR 

channel at 0.6 microns. Channel 3a is only available operationally (with only a few 

exceptions) from satellites operating in morning orbits (e.g., NOAA-17, METOP-A  and 

METOP-B). Data from satellites in morning orbit can also be collocated with CALIOPSO-

CALIOP data but only for positions close to latitude 70 degrees. This means that Rswir_3a 

statistics cannot be collected with global coverage. This is particularly problematic for the dry 

land surface category (G5 in Table 3-5) when considering that the surface reflectivity at 1.6 

microns is high over desert surfaces risking bing mixed up with corresponding cloud 

reflectivities. 

 

We have overcome this problem by training CMa-Prob against corresponding 1.6 micron 

radiances measured by the MODIS instrument carried by the Aqua satellite. This can be done 

since the spectral responses at this particular channel (and also for the channel at 0.6 micron 

used to calculate the reflectance quota) are very similar for the AVHRR and MODIS sensors. 

The Aqua satellite is part of the A-train and thus offers almost simultaneous and continuous 

observations with CALIPSO-CALIOP. We used one year of MODIS data (2010) for training 

the CMa-Prob method.   
 

Figure 4-4 shows resulting daytime Rswir_3a probability distributions for desert surfaces 

(left) and for surfaces with permanent snow-cover (right). Results are based on training with 

the unfiltered CALIOP cloud mask. We notice a very distinctive cloud signature in both cases 

showing that this image feature can be used with great confidence in the cloud screening 

process. This feature appears actually more reliable for detection of clouds over desert 

surfaces than the previously described Rvis37 feature (see Fig. 4-2 right). Distributions for the 

latter has a much more serious mix between cloudy and clear radiances (e.g., in the interval 
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15-35 % reflectivity in Fig. 4-2). The high cloud detection capability of this feature over 

snow-covered surfaces is also clearly seen in Fig. 4-4 (right). This was the major reason for 

introducing this channel historically. 

 

 

Figure 4-4 Daytime distribution of cloud occurrences (or cloud frequencies) as a function of 

the reflectance quota (Rswir_3a in Tab. 3-2) between AVHRR-heritage channels at 1.6 

micron and 0.6 microns based on Aqua Modis data. Left: Distribution over dry surfaces 

(surface category G5 in Tab. 3-5). Right:  Distribution over surfaces with permanent 

snow-cover (surface category G8 in Tab. 3-5). All statistics are calculated from 

collocations with the original unfiltered CALIOP cloud mask. 

 
 

4.3 Product demonstration 

The CMa-Prob product is available in PPS version 2018 for both high resolution AVHRR 

data (HRPT, 1 km) and reduced resolution Global Area Coverage (GAC, 5 km) data. It is also 

possible to produce CMa-Prob results for MODIS and VIIRS data, although currently 

restricted to only being based on information from AVHRR-heritage channels. For MODIS 

data, statistics is available trained on actual MODIS data for one full year (2010). In the case 

of VIIRS, the product is still based on statistics derived from AVHRR data. Representative 

training data for VIIRS from collocations with CALIPSO-CALIOP remains to be compiled in 

the near future.  

 

Figure 4-5 illustrates an AVHRR GAC case with the full cloud probability result displayed as 

a greyscale image together with a colour composite image of the original radiances. We notice 

from visual inspection that the areas with high CMa-Prob cloud probabilities (white colours) 

correspond very well to cloud fields identified by visual inspection in the RGB composite for 

this particular case. However, noteworthy is that thin and broken cloud fields over the ocean 

surfaces are much more highlighted in the CMa-Prob image than in the colour composite.  
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  Figure 4-5 Part of an original NOAA-18 AVHRR GAC scene in satellite projection over the 

North American west coast (with Gulf of California and Baja California in the center) 

registered in ascending mode (i.e., North is down, South is up) from 26 January 2010. 

Left: Colour composite with AVHRR channel 1 (red), channel 2 (green) and channel 4 

(blue). Right: Corresponding CMa-Prob cloud probabilities (as greyscale image with 

range 0-100 %).  

This is mainly explained by the added cloud information coming from features Rvis37 and 

Texture_day described earlier in Tab. 3-2. These features contain information from the 3.7 

channel which is information that is not displayed by the colour composite in the leftmost 

panel of 5. Thus, the CMa-Prob results are clearly based on more information than what is 

displayed in the RGB representation in Fig. 4-5. 
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 Figure 4-6 Part of an original NOAA-18 AVHRR GAC scene in satellite projection over 

Spain and northern Africa registered in ascending mode (i.e., North is down, South is up) 

from 16 May 2007. Left: Colour composite with AVHRR channel 1 (red), channel 2 

(green) and channel 4 (blue). Right: Corresponding CMa-Prob cloud probabilities (as 

greyscale image with range 0-100 %). 

Figure 4-6 shows a NOAA-18 case including portions of the desert regions of Northern 

Africa. This example illustrates how clouds and bright desert surfaces can be efficiently 

separated taking advantage of the full information content in all AVHRR channels. Despite 

observing over relatively bright desert surfaces (i.e., surface reflectances in visible channels 

are rather close to cloud reflectances here), the resulting cloud probabilities are distinctly at 

the zero level (black areas) for cloud free areas and close to 100 % (white areas) for cloudy 

areas. Again we find high cloud probabilities for thin cirrus cloud fields over Spain and the 

Mediterranean Sea. The most important information in this scene comes mainly from 

AVHRR channels 3 and 5, which are not displayed in the colour composite image. The 

problem of using contextual (texture) information in applications like this results in high 

cloud probabilities on the sea side of the coastlines (since texture features are only used over 

ocean surfaces). Consequently, probabilistic approaches also need to consider a special 

coastal treatment; this is included in the planned upcoming versions of CMa-Prob. 
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 Figure 4-7 Part of an original NOAA-17 AVHRR GAC scene in satellite projection over 

Greenland registered in descending mode (i.e., North is up, South is down) from 4 June 

2009. Left: Colour composite with AVHRR channel 1 (red), channel 2 (green) and channel 

4 (blue). Right: Corresponding CMa-Prob cloud probabilities (as greyscale image with 

range 0-100 %). 

Fig. 4-7 shows a NOAA-17 case over Greenland from 4 June 2009. This case clearly 

illustrates the strength of the Rswir_3a feature in Tab. 3-2. The colour composite shows how 

snow-covered surfaces and cloud features are hard to separate (if not using shadow effects) 

but taking into account also the information in AVHRR channel 3a makes this distinction 

very efficient in the CMA-prob image.    

 

The previous figures have demonstrated results for rather well-illuminated and favourable 

atmospheric conditions. A final example is given in Figs. 4-8 and 4-9 showing a case where 

cloud separability conditions over different surfaces start to vary a lot and where the 

usefulness of different statistics over different surfaces is clearly visible in the results. Notice 

that Fig. 4-9 shows an overestimation of the differences between Greenland and the 

surrounding surfaces. This was done to highlight how probabilities may vary between 

different surfaces.  According to Tab. 3-5 the recommended cloud detection sensitivity level 

for Greenland is 0.3 during daytime and 2.0 at night. These are the values used for the current 

CMa-Prob version in PPS version 2018. In Figs 4-8 and 4-9 a cloud detection sensitivity level 
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of 5.0 has been used to highlight the different probabilities over ice-free ocean and the 

Greenland snow cap.   

 

 

Figure 4-8 Left: Resulting CMa-Prob probabilistic cloud mask in grayscales (blue = 

probability below 50 %) when training with unfiltered CALIOP mask. Middle: Same as left 

image but training with a CALIOP mask filtered at optical thickness 5.0. Right: RGB-

image with AVHRR channels at 0.6 μm, 0.9 μm and 11 μm. AVHRR scene over Greenland 

(north is down!) from 22 June 2007 12:19 UTC.  
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Figure 4-9 Final cloud probability for the same case as in Figure 4-8 above. Blue areas have 

cloud probabilities below 50 %. Resulting probabilistic cloud mask is continuous but 

probability levels change when surface conditions for the classifier change from good to 

poor (e.g. along Greenland coast). 

 

Validation results for the CMa-Prob method are presented in RD 2.  

 

5 Limitations and areas for future improvements 

The CMA-prob method described in this document is the third prototype version and this time 

based on dynamic threshold information from PPS version 2018. The first version was 

described in the paper by Karlsson et al. (2015) and was based on dynamic threshold 

information from PPS version 2010. The second version (briefly described by Karlsson et al., 

2016) was based on dynamic threshold information from PPS version 2014. Thus, it is clear 

that the method should be seen as an extension of the official PPS software and it cannot be 

run independently from PPS. Consequently, if continuing with this approach the method 

needs to be updated (new training) for every new release of the PPS method.  

Statistical methods are always limited by the amount of training data being used. It is clear 

from probability distributions shown in Sections 3.6 and 3.7 that the current training dataset is 

not fully capable of providing very well-defined probability distributions over all Earth 

surfaces and for all conditions. Additionally, for some sensors like VIIRS the method is 

currently executable based exclusively on AVHRR-derived statistics. Thus, thorough training 

with real VIIRS data has still to be done. In that respect, it is very encouraging that results are 

still as good as being documented (RD 2). However, it is very clear that an improved amount 

of training data would be beneficial for future versions of the method. Consequently, it is 

planned to extend the training material with considerably more data from CALIPSO up to 
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present date. Also ways of transferring the results between different satellite sensors will be 

considered (e.g., by use of Spectral Band Adjustment Factors (SBAFs, Bhatt et al., 2016). 

If the visual channels (0.6 m and 0.9 m) are missing, when expected, the Cloud Probability 

will be set to no-data. This could eg. sometimes happen in twilight. 
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7 Glossary 

ATBD Algorithm Theoretical Baseline Document 

AVHRR Advanced Very High Resolution Radiometer 

CALIOP Cloud-Aerosol Lidar with Orthogonal Polarization (CALIPSO) 

CALIPSO Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations 

CDOP Continuous Development and Operations Phase 

CLARA CMSAF cLoud, Albedo and surface RAdiation dataset 

CMA-prob Cloud Mask (probabilistic) 

CM SAF Satellite Application Facility on Climate Monitoring 

CPP Cloud Physical Properties 

DRI Delivery Readiness Inspection 

DWD Deutscher Wetterdienst (German MetService) 

ECMWF European Centre for Medium Range Forecast 

ECV Essential Climate Variable 

EPS European Polar System 

EUMETSAT 
European Organisation for the Exploitation 

of Meteorological Satellites 

FOV Field of view 

GAC Global Area Coverage (AVHRR) 

GCOS Global Climate Observing System 

IOP Initial Operations Phase 

ITCZ Inter-Tropical Convergence Zone 

KNMI Koninklijk Nederlands Meteorologisch Institut 

NASA National Aeronautics and Space Administration 

NDBC National Data Buoy Center 

NESDIS National Environmental Satellite, Data, and Information System 

NOAA National Oceanic & Atmospheric Administration 

NODC National Oceanographic Data Center 

NSIDC National Snow and Ice Data Center 

NWCSAF Satellite Application Facility for Nowcasting  

NWP Numerical Weather Prediction 

PPS Polar Platform System 

PRD Product Requirement Document 

PUM Product User Manual 

RMIB Royal Meteorological Institute of Belgium 
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RMS Root Mean Square 

RSMAS Rosenstiel School of Marine and Atmospheric Science 

RSS Remote Sensing Systems 

SAF Satellite Application Facility 

SMHI Swedish Meteorological and Hydrological Institute 

SST Sea Surface Temperature 
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