

Issue: File: Page:

Code: NWC/CDOP2/GEO/MFL/SCI/UM/Cloud **Date:** 15 October 2016

NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0 1/56

User Manual for the Cloud Product Processors of the NWC/GEO: Science Part

NWC/CDOP2/GEO/MFL/SCI/UM/Cloud, Issue 1, Rev. 0 15 October 2016

Applicable to

GEO-CMA-v4.0 (NWC-002) (NWC-006) GEO-CT-v3.0 GEO-CTTH-v3.0 (NWC-010) (NWC-013) GEO-CMIC-v1.0

 Code:
 NWC/CDOP2/GEO/MFL/SCI/UM/Cloud

 Issue:
 1.0
 Date:
 15 October 2016

 File:
 NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0

 Page:
 2/56

REPORT SIGNATURE TABLE

Function	Name	Signature	Date
Prepared by	Herve Le Gleau		15 October 2016
	MF/DP/CMS		
Reviewed by	Hervé Le Gléau		15 October 2016
	MF/DP/CMS		
Authorised by	NWC SAF Project Manager		15 October 2016

Code: NWC/CDOP2/GEO/MFL/SCI/UM/Cloud **Date:** 15 October 2016 **Issue:** File: NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0 3/56 Page:

DOCUMENT CHANGE RECORD

Version	Date	Pages	Changes
1.0d	15 June 2015	56	Draft version for STRR
1.0	15 October 2016	56	Inclusion of STRR outcome

 Code:
 NWC/CDOP2/GEO/MFL/SCI/UM/Cloud

 Issue:
 1.0
 Date:
 15 October 2016

 File:
 NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0

 Page:
 4/56

Table of Contents

1	INTRODUCTION	7
	1.1 Scope of the document	7
	1.2 SCOPE OF OTHER DOCUMENTS	7
	1.3 SOFTWARE VERSION IDENTIFICATION	
	1.4 IMPROVEMENT FROM PREVIOUS VERSION	7
	1.5 DEFINITIONS, ACRONYMS AND ABBREVIATIONS	
	1.6 References	
	1.6.1 Applicable documents	
	1.6.2 Reference documents	
2	CLOUD MASK (GEO-CMA) PRODUCT	11
	2.1 DESCRIPTION OF CLOUD MASK (GEO-CMA) PRODUCT	
	2.1.1 Goal of Cloud Mask (GEO-CMA) product	
	2.1.2 Description of Cloud Mask (GEO-CMA) algorithm	
	2.1.2 Description of Cloud Mask (GEO-CMA) algorithm 2.1.3 Description of Cloud Mask (GEO-CMA) output	
	2.2 IMPLEMENTATION OF CLOUD MASK (GEO-CMA)	
	2.2.1 Manual preparation of Cloud Mask (GEO-CMA) model configuration file for each region	
	2.2.1 Manual preparation of Cloud Mask (GEO-CMA) model configuration fite for each region 2.2.2 Cloud Mask (GEO-CMA) execution step	
	2.3 INPUTS AND CONFIGURABLE PARAMETERS FOR CLOUD MASK (GEO-CMA)	
	2.3.1 List of inputs for Cloud Mask (GEO-CMA)	
	2.3.1 List of inputs for Cloud Mask (GEO-CMA)	
	2.3.2 Cma Model Configuration File 2.3.3 Configurable parameters for Cloud Mask (GEO-CMA)	
	2.4 CLOUD MASK (GEO-CMA) VALIDATION	
	2.4.1 Summary of Cloud Mask (GEO-CMA) validation results	
	2.4.2 Typical known problems and recommendation for use	
	2.5 EXAMPLE OF CLOUD MASK (GEO-CMA) VISUALISATION	
3	CLOUD TYPE (GEO-CT) PRODUCT	
3		
	3.1 DESCRIPTION OF CLOUD TYPE (GEO-CT) PRODUCT	
	3.1.1 Goal of Cloud Type (GEO-CT) product	
	3.1.2 Outline of Cloud Type (GEO-CT) product	
	3.1.3 Description of Cloud Type (GEO-CT) output	
	3.2 IMPLEMENTATION OF CLOUD TYPE (GEO-CT)	
	3.2.1 Manual preparation of Cloud Type (GEO-CT) model configuration file for each region	
	3.2.2 The Cloud Type (GEO-CT) execution step	
	3.3 INPUT AND CONFIGURABLE PARAMETERS FOR CLOUD TYPE (GEO-CT)	
	3.3.1 List of inputs for Cloud Type (GEO-CT)	
	3.3.2 CT Model Configuration File	
	3.3.3 Configurable parameters for Cloud Type (GEO-CT)	
	3.4 CLOUD TYPE (GEO-CT) VALIDATION	
	3.4.1 Summary of Cloud Type (GEO-CT) validation results	
	3.4.2 Typical known problems and recommendation for use	
	3.5 EXAMPLE OF CLOUD TYPE (GEO-CT) VISUALISATION	31
4	CLOUD TOP TEMPERATURE AND HEIGHT (GEO-CTTH) PRODUCT	33
	4.1 DESCRIPTION OF CLOUD TOP TEMPERATURE AND HEIGHT (GEO-CTTH) PRODUCT	33
	4.1.1 Goal of Cloud Top Temperature and Height (GEO-CTTH) product	
	4.1.2 Outline of Cloud Top Temperature and Height (GEO-CTTH) algorithm	
	4.1.3 Description of Cloud Top Temperature and Height (GEO-CTTH) output	
	4.2 IMPLEMENTATION OF CLOUD TOP TEMPERATURE AND HEIGHT (GEO-CTTH)	
	4.2.1 Manual preparation of Cloud Top Temperature and Height (CTTH) model configuration file	for each

 Code:
 NWC/CDOP2/GEO/MFL/SCI/UM/Cloud

 Issue:
 1.0
 Date:
 15 October 2016

 File:
 NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0

 Page:
 5/56

	4.2.2	The Cloud Top Temperature and Height (GEO-CTTH) execution step	
	4.3 INPU	TS AND CONFIGURABLE PARAMETERS FOR CLOUD TOP TEMPERATURE AND HEIGHT (GEO-CTTH)	39
	4.3.1	List of inputs for Cloud Top Temperature and Height (GEO-CTTH)	39
	4.3.2	CTTH Model Configuration File	41
	4.3.3	Configurable parameters for Cloud Top Temperature and Height (GEO-CTTH)	43
	4.4 CLO	UD TOP TEMPERATURE AND HEIGHT (GEO-CTTH) VALIDATION	43
	4.4.1	Summary of Cloud Top Temperature and Height (GEO-CTTH) validation results	43
	4.4.2	Typical known problems and recommendation for use	
	4.5 Exa	MPLE OF CLOUD TOP TEMPERATURE AND HEIGHT (CTTH) VISUALISATION	44
5	CLOU	D MICROPHYSICS (GEO-CMIC) PRODUCT	46
	5.1 DESC	CRIPTION OF CLOUD MICROPHYSICS (GEO-CMIC) PRODUCT	46
	5.1.1	Goal of Cloud Microphysics product	46
	5.1.2	Outline of Cloud Microphysics (GEO-CMIC) algorithm	46
	5.1.3	Description of Cloud Microphysics (GEO-CMIC) output	47
	5.2 IMPI	EMENTATION OF CLOUD MICROPHYSICS (GEO-CMIC)	50
	5.2.1	Manual preparation of Cloud Microphysics (GEO-CMIC) model configuration file for each region	on 50
	5.2.2	The Cloud Microphysics (GEOCMIC) execution step	51
	5.3 INPU	TS AND CONFIGURATION PARAMETERS FOR CLOUD MICROPHYSICS (GEO-CMIC)	
	5.3.1	List of inputs for Cloud Microphysics (GEO-CMIC)	51
	5.3.2	CMIC Model Configuration File	
	5.3.3	Configurable parameters for Cloud Microphysics (GEO-CMIC)	53
	5.4 CLO	UD MICROPHYSICS (GEO-CMIC) VALIDATION	
	5.4.1	Summary of Cloud Microphysics (GEO-CMIC) validation results	53
	5.4.2	Typical known problems and recommendation for use	54
	5.5 Exa	MPLE OF CLOUD MICROPHYSICS (CMIC) VISUALISATION	54

 Code:
 NWC/CDOP2/GEO/MFL/SCI/UM/Cloud

 Issue:
 1.0
 Date:
 15 October 2016

 File:
 NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0

 Page:
 6/56

List of Tables and Figures

Figure 1: Example of SEVIRI dust cloud flag superimposed on a 10.8 μ m infrared image: dust cloud over North	ı
Africa on 14 th July 2003 at 13h00 UTC	24
Figure 2: Example of MODIS volcanic ash cloud superimposed on a 10.8 \mu infrared image: Etna eruption on	22th
July 2001 at 9h55 UTC	24
Figure 3: Example of SEVIRI CT cloud type using the colour palette included in CT NetCdF files	
Figure 4: Example of SEVIRI CTTH cloud top pressure	
Figure 5 Example of SEVIRI cloud phase flag illustrated with the colour palette included in the CMIC NetCdF	
files	
Figure 6 Example of SEVIRI cloud effective radius illustrated with the colour palette included in the CMIC Net	CdF
files	10
Table 2: List of Referenced Documents	10
Table 3: Test sequence over land	12
Table 4: Test sequence over sea	12
Table 5: CMa default Model Configuration File description	21
Table 6: Summary of validation results of the current CMA version (POD stands for Probability Of Detection).	
Table 7: CT default Model Configuration File description	30
Table 8: Summary of validation results of the current CT version	31
Table 9: CTTH default Model Configuration File description	43
Table 10: Summary of validation results of the current CTTH version (std stands for standard deviation)	44
Table 11: CMIC default Model Configuration File description	53
Table 12: Summary of validation results of the current CMIC cloud phase and cloud liquid water path (POD st	ands
for Probability Of Detection)	54

Code:NWC/CDOP2/GEO/MFL/SCI/UM/CloudIssue:1.0Date:15 October 2016File:NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0Page:7/56

1 INTRODUCTION

The Eumetsat "Satellite Application Facilities" (SAF) are dedicated centres of excellence for processing satellite data, and form an integral part of the distributed EUMETSAT Application Ground Segment (http://www.eumetsat.int). This documentation is provided by the SAF on Support to Nowcasting and Very Short Range Forecasting, NWC SAF. The main objective of NWC SAF is to provide, further develop and maintain software packages to be used for Nowcasting applications of operational meteorological satellite data by National Meteorological Services. More information can be found at the NWC SAF webpage, http://www.nwcsaf.org. This document is applicable to the NWC SAF processing package for geostationary meteorological satellites, NWC/GEO.

1.1 Scope of the document

This document is the Product User Manual for the Cloud Products components PGE01 (GEO-CMA, Cloud Mask), PGE02 (GEO-CT, Cloud Type), PGE03 (GEO-CTTH, Cloud Top Temperature and Height) and PGE15 (GEO-CMIC, Cloud Microphysics) of the NWC/GEO software package.

This document contains practical information of the above mentioned products, on their applicability and limitations.

1.2 Scope of other documents

The algorithms used to extract the GEO Cloud Products are detailed in the algorithm theoretical basis document for cloud products ([AD.11.]).

The validation of the algorithms used to extract the GEO Cloud Products is reported in the validation report for cloud products ([RD.1.]).

Instructions to install, configure and execute the SAFNWC/GEO software in order to extract the GEO Cloud Products are detailed in the software user manual ([RD.2.]).

The interface control documents ([AD.6.]) (for the External and Internal Interfaces of the SAFNWC/GEO) and ([AD.8.]) (GEO Output Product Format Definition) detail the input and output data format for the SAFNWC/GEO software.

1.3 SOFTWARE VERSION IDENTIFICATION

This document describes the products obtained from the GEO-CMA-v4.0 (Product Id NWC-002), GEO-CT-v3.0 (Product Id NWC-006), GEO-CTTH-v3.0 (Product Id NWC-010) and GEO-CMIC-v1.0 (Product Id NWC-013) implemented in the release 2016 of the NWC/GEO software package.

1.4 IMPROVEMENT FROM PREVIOUS VERSION

Since 2013 release, the following improvements have been implemented:

- Technical improvements: interface to updated NWCLIB, new output format, technical adaptation to process other meteorological geostationary satellites than MSG
- Scientific improvements:

Part

Code:NWC/CDOP2/GEO/MFL/SCI/UM/CloudIssue:1.0Date:15 October 2016File:NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0Page:8/56

o GEO-CMA: use of RTTOV on line to improve some thresholds, reduction of fire/cloud confusion

GEO-CT: noneGEO-CTTH: none

o GEO-CMIC: new product based on cloud phase and cloud optical thickness and effective particle size respectively output and internally computed in CT from 2013 release. The main improvement since 2013 release is the availability of new outputs (cloud optical thickness, effective particle size, liquid and ice water path) and the use by the retrieval algorithm of cloud reflectance simulations based on DISORT instead RTMOM.

1.5 DEFINITIONS, ACRONYMS AND ABBREVIATIONS

Second Simulation of Satellite Signal in the Solar Spectrum

BRDF Bi-directional Reflectance Functions

CMA Cloud Mask

CMIC Cloud Microphysics

CMS Centre de Meteorologie Spatiales (Météo-France, satellite reception centre

in Lannion)

CTTH Cloud Top Temperature and Height

CT Cloud Type

DISORT Discrete Ordinates Radiative Transfer Program

ECMWF European Centre for Medium range Weather Forecast

EUMETSAT European Meteorological Satellite Agency

FOV Field Of View

GEO Meteorological Geostationary Satellite

HDF Hierarchical data Format

HRIT High Rate Information Transmission

IR InfraredK Kelvin

LUT Look-Up Table

MODIS Moderate-Resolution Imaging Spectroradiometer

MSG Meteosat Second Generation

NIR Near Infra-Red

NOAA National Oceanic and Atmospheric Administration

NWC SAF SAF to support NoWCasting and VSRF

NWCLIB NWC/GEO common library
NWP Numerical Weather Prediction

OSI SAF Ocean and Sea Ice SAF

 Code:
 NWC/CDOP2/GEO/MFL/SCI/UM/Cloud

 Issue:
 1.0
 Date:
 15 October 2016

 File:
 NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0

 Page:
 9/56

OSTIA Operational Sea Surface Temperature and Sea Ice Analysis

PGE Product Generation Element

R0.6µm 0.6 visible reflectance

RTMOM Radiative Transfer based on Matrix Operator Method

RTTOV Rapid Transmissions for TOVs
SAF Satellite Application Facility

SEVIRI Spinning Enhanced Visible & Infrared Imager

SST Sea Surface Temperature
SUM Software User Manual

SW Software

T11μm 11 micrometer infrared brightness temperature

TIGR Tovs Initial Guess Retrieval

TOA Top Of Atmosphere

VIS Visible

1.6 REFERENCES

1.6.1 Applicable documents

The following documents, of the exact issue shown, form part of this document to the extent specified herein. Applicable documents are those referenced in the Contract or approved by the Approval Authority. They are referenced in this document in the form [AD.X]

For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. For undated references, the current edition of the document referred applies.

Current documentation can be found at the NWC SAF Helpdesk web: http://www.nwcsaf.org

 Code:
 NWC/CDOP2/GEO/MFL/SCI/UM/Cloud

 Issue:
 1.0
 Date:
 15 October 2016

 File:
 NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0

 Page:
 10/56

Ref	Title	Code	Vers	Date
[AD.1.]	Proposal for the Second Continuous	NWC/CDOP2/MGT/AEMET/PRO	1.0	15/03/2011
	Development and operation Phase (CDOP) march			
	2012 – February 2017			
[AD.2.]	NWCSAF Project Plan	NWC/CDOP2/SAF/AEMET/MGT/PP	1.9	15/10/2016
[AD.3.]	Configuration Management Plan for the	NWC/CDOP2/SAF/AEMET/MGT/CMP	1.4	15/10/2016
	NWCSAF			
[AD.4.]	NWCSAF Product Requirement Document	NWC/CDOP2/SAF/AEMET/MGT/PRD	1.9	15/08/2016
[AD.5.]	System and Components Requirements	SAF/NWC/CDOP2/AEMET/SW/SCRD	1.2	15/10/2016
	Document for the NWC/GEO			
[AD.6.]	Interface Control Document for Internal and	NWC/CDOP2/GEO/AEMET/SW/ICD/1	1.1	15/10/2016
	External Interfaces of the NWC/GEO			
[AD.7.]	Interface Control Document for the NWCLIB of	NWC/CDOP2/GEO/AEMET/SW/ICD/2	1.1	15/10/2016
	the NWC/GEO			
[AD.8.]	Data Output Format for the NWC/GEO	NWC/CDOP2/GEO/AEMET/SW/DOF	1.1	15/10/2016
[AD.9.]	Architectural Design Document for the	NWC/CDOP2/GEO/AEMET/SW/ACDD	1.1	15/10/2016
	NWC/GEO			
[AD.10.]	Component Design Document for the Cloud	NWC/CDOP2/GEO/MFL/SW/ACDD/Clo	1.1	15/10/2016
	Product Processors of the NWC/GEO	ud		
[AD.11.]	Algorithm Theoretical Basis Document for the	NWC/CDOP2/GEO/MFL/SCI/ATBD/Clo	1.1	15/10/2016
	Cloud Product Processors of the NWC/GEO	ud		
[AD.12.]	The Nowcasting SAF glossary	NWC/CDOP2/SAF/AEMET/MGT/GLO	2.0	18/2/2014

Table 1: List of Applicable Documents

1.6.2 Reference documents

The reference documents contain useful information related to the subject of the project. These reference documents complement the applicable ones, and can be looked up to enhance the information included in this document if it is desired. They are referenced in this document in the form [RD.X]

For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. For undated references, the current edition of the document referred applies

Current documentation can be found at the NWC SAF Helpdesk web: http://www.nwcsaf.org.

Ref	Title	Code	Vers	Date
[RD.1.]	Scientific and Validation report for the cloud	NWC/CDOP2/GEO/MFL/SCI/VR/Cloud	1.0	15/10/2016
	products processors of the NWC/GEO			
[RD.2.]	User Manual for the NWC/GEO application:	NWC/CDOP2/GEO/AEMET/SW/UM	1.0	15/10/2016
	Software part			

Table 2: List of Referenced Documents

Code: NWC/CDOP2/GEO/MFL/SCI/UM/Cloud Issue: 1.0 Date: 15 October 2016 File: NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0 Page: 11/56

2 CLOUD MASK (GEO-CMA) PRODUCT

2.1 DESCRIPTION OF CLOUD MASK (GEO-CMA) PRODUCT

2.1.1 Goal of Cloud Mask (GEO-CMA) product

The cloud mask (GEO-CMA), developed within the NWC SAF context, aims to support nowcasting applications, and additionally the remote-sensing of continental and oceanic surfaces. The CMA allows identifying cloud free areas where other products (total or layer precipitable water, instability indices, land or sea surface temperatures, snow/ice cover delineation) may be computed. It also allows identifying cloudy areas where other products (cloud types, cloud top temperature/height, cloud microphysic, precipitation) may be derived.

The central aim of the CMA is therefore to delineate all cloud-free pixels in a satellite scene with a high confidence. In addition, the product provides information on the presence of snow/sea ice, dust clouds, volcanic plumes.

2.1.2 Description of Cloud Mask (GEO-CMA) algorithm

The algorithm has been designed to be applicable to imagers on board meteorological geostationary satellites. The imagers may have different set of channels possibly at different horizontal resolutions. The lowest native resolution of the radiometer (3km at nadir for MSG/SEVIRI), which is for most imagers on board present and future meteorological geostationary satellites the horizontal resolution of all IR channels and some solar channels, will be chosen as the default horizontal resolution. Solar channels may be available at higher horizontal resolution (1km at nadir for HRV). In this release, the process is applied to all useful channels at the default horizontal resolution (high resolution channels being averaged at this resolution), the high resolution channels being additionally used at their native resolution to detect sub-pixels clouds inside pixels at default horizontal resolution. We use generic labels in this document (for example, T3.8µm, T8.7µm, T10.8µm, T12.0µm, R0.6µm, R0.8µm and R1.6µm), the exact central wavelengths of the corresponding channels depending on the satellite. The list of available labels depends on the satellite; the list of mandatory channels is listed in 2.3.1.

A first process allows the identification of clouds or snow/ice. It consists in the following steps which are applied to all pixels at default horizontal resolution:

- a first set of multispectral tests with thresholds computed from Look-Up Tables (LUT) allows detecting most of the pixels containing cloud or snow,
- (optional step) a second limited set of multispectral tests with thresholds computed from RTTOV applied on-line to NWP vertical profiles allows by a more accurate threshold computation a detection of low or thin high clouds that remained undetected when using LUTs,
- an analysis of the temporal variation (on a short period of time around 15 minutes) of some spectral combination of channels allows detecting rapidly moving clouds,
- a specific treatment combining temporal coherency analysis and region growing technique allows the improvement of low clouds detection in twilight conditions,

Code:NWC/CDOP2/GEO/MFL/SCI/UM/CloudIssue:1.0Date:15 October 2016File:NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0Page:12/56

- (optional step) an analysis of solar channels at high spatial resolution (HRV for MSG) allows detecting sub-pixel clouds inside pixel at default horizontal resolution,
- a spatial filtering is finally applied to cold areas, cloud edges (over ocean), isolated cloud pixel (land) and snow-area edges

Additional processes allowing the identification of dust clouds or volcanic ash clouds, are applied to all pixels (even already classified as cloud-free or contaminated by clouds). The result is stored in separate flags (dust cloud or volcanic ash cloud flags).

Details on th tests are given in the algorithm theoretical basis document for cloud products ([AD.11.]).

Daytime	Twilight	Nighttime
Snow detection	Snow detection	T10.8μm -T3.8μm
R0.6µm	R0.6μm	T10.8μm
T10.8μm	T10.8μm	T10.8μm -T12.0μm
T10.8μm-T12.0μm	T10.8μm-T12.0μm	T8.7μm-T10.8μm
T8.7μm-T10.8μm	T10.8μm-T3.8μm	T3.8μm-T10.8μm
T10.8μm-T3.8μm	T8.7μm-T10.8μm	Local Spatial Texture
T3.8µm-T10.8µm	T3.8μm-T10.8μm	Τ8.7μm-Τ3.8μm
Local Spatial Texture	Local Spatial Texture	
	T8.7μm-T3.8μm	

Table 3: Test sequence over land

Daytime	Sunglint	Twilight	Nighttime
Ice detection	Ice detection	Ice detection	T10.8μm-T3.8μm
R0.8μm (R0.6μm)	SST	R0.8μm (R0.6μm)	SST
SST	T10.8μm-T12.0μm	T10.8μm-T3.8μm	T8.7μm-T10.8μm
R1.6µm	T8.7μm-T10.8μm	SST	T10.8μm-T12.0μm
T10.8μm-T12.0μm	Local Spatial Texture	R1.6μm	T12.0μm-T3.8μm
T8.7μm-T10.8μm	R0.8μm (R0.6μm)	T8.7μm-T10.8μm	T3.8μm-T10.8μm
Т10.8μm-Т3.8μm	Т10.8μm-Т3.8μm	T10.8μm-T12.0μm	Local Spatial Texture
T3.8μm-T10.8μm	Low Clouds in Sunglint	T12.0μm-T3.8μm	
Local Spatial Texture		Т3.8µm-Т10.8µm	
		Local Spatial Texture	

Table 4: Test sequence over sea

 Code:
 NWC/CDOP2/GEO/MFL/SCI/UM/Cloud

 Issue:
 1.0
 Date:
 15 October 2016

 File:
 NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0

 Page:
 13/56

[T3.8μm, T8.7μm, T10.8μm and T12.0μm are labels that stand for brightness temperatures at around 3.8, 8.7, 10.8 and 12.0 micrometer; R0.6μm, R0.8μm and R1.6μm stand for VIS/NIR bi-directional top of atmosphere reflectances at around 0.6, 0.8 and 1.6 micrometer normalised for solar illumination; SST is the split-window (used for SST calculation) computed from T10.8μm and T12.0μm measurements. Low Clouds in Sunglint is a specific module for low clouds identification in sunglint areas. It must be noted that labels (T3.8μm, T8.7μm, T10.8μm, T12.0μm, R0.6μm, R0.8μm and R1.6μm) are generic, the exact central wavelength of the corresponding channel depending on the satellite]

2.1.3 Description of Cloud Mask (GEO-CMA) output

The content of the GEO-CMA output (in NetCdF format) is described in the Data Output Format document ([AD.8.]), a summary is given below:

Container			Content
GEO-CMA	SAFNWC GEO CMA Cloud Mask		
		Class	Cloud Mask category
		0	Cloud-free
		1	Cloudy
		FillValue	No data or corrupted data
GEO-CMA	SAFNWC GEO C	MA Cloud a	and Snow Mask
_CLOUDSNOW		Ol	Clarater 1 Community Management
		Class	Cloud and Snow Mask category Cloud-free
		1	
		2	Cloud (except thin ice cloud over snow) Thin ice cloud over snow/ice
		3	Snow/Ice
		FillValue	No data or corrupted data
GEO-CMA	SAFNWC GEO CMA Dust Detection		
DUST	SALTI WE GEO CIVIA DUST DETECTION		
_		Class	Dust Detection category
		0	No dust
		1	Dust
		2	Undefined (separability problem)
		FillValue	No data or corrupted data
GEO-CMA	SAFNWC GEO C	MA Volcani	ic Plume Detection
_VOLCANIC			
		Class	Volcanic Plume Detection category
		0	No volcanic plume
		1	Volcanic plume
		2	Undefined (separability problem)
		FillValue	No data or corrupted data

 Code:
 NWC/CDOP2/GEO/MFL/SCI/UM/Cloud

 Issue:
 1.0
 Date:
 15 October 2016

 File:
 NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0

 Page:
 14/56

Contribution			
Container GEO-CMA	28 hite india	Content ating (if set to 1)	
_TESTLIST	26 bits maic	ating (it set to 1)	
	Bit 0:	R0.6μm (land) or R0.8μm (sea)	
	Bit 1:	R1.6μm (sea)	
	Bit 1:	Sunglint test using 3.8µm	
	Bit 3:	R1.38µm	
	Bit 4:	T10.8µm or SST	
	Bit 4:	T10.8μm – T12.0μm	
	Bit 6:	T10.8µm – T12.0µm T10.8µm – T3.8µm	
	Bit 7:	T12.0µm – T3.8µm	
	Bit 8:	T3.8µm – T10.8µm	
	Bit 9:	T10.8µm – T8.7µm	
	Bit 10:	T8.7μm – T10.8μm	
	Bit 10:	T8.7μm – T3.8μm	
	Bit 12:	Snow with only T3.8µm	
	Bit 13:	Snow with R1.6μm	
	Bit 14:	Snow with K1.6µm Snow with combined use of R1.6 µm and R2.2µm	
	Bit 15:	Local Spatial Texture	
	Bit 16:	T10.8µm with RTTOV	
	Bit 17:	T3.8µm with RTTOV	
	Bit 17:	T8.7µm – T3.8µm with RTTOV	
	Bit 19:	T10.8μm – T12.0μm with RTTOV	
	Bit 20:	T10.8µm – T8.7µm with RTTOV	
	Bit 20:	T10.8µm – T3.8µm with RTTOV	
	Bit 22:	Temporal-differencing	
	Bit 23:	Stationary cloud in twilight	
	Bit 24:	Spatial extension of stationary clouds in twilight	
	Bit 25:	Use of high resolution visible	
	Bit 26:	Spatial filtering: cloud reclassified as cloud-free	
	Bit 27:	Spatial filtering: cloud-free reclassified as cloud	
CEO CMA	10.1.2: 1.22	discovered to	
GEO-CMA	10 bits indic	ating (if set to 1)	
_status_flag	Bit 0:	Low level thermal inversion in NWP field	
	Bit 0.	Cold snowy ground suspected	
	Bit 1. Bit 2:	Temporal algorithm passed	
	Bit 3:	High resolution satellite data used	
	Bit 4:	RTTOV on line-used	
	Bit 5:	SST analysis available	
	Bit 6:	Snow map available (not yet used)	
	Bit 7:	Sea ice map is available (not yet used)	
	Bit 8:	No method for dust	
	Bit 9:	No method for volcanic plume	

 Code:
 NWC/CDOP2/GEO/MFL/SCI/UM/Cloud

 Issue:
 1.0
 Date:
 15 October 2016

 File:
 NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0
 Page:
 15/56

Geophysical Conditions

Field	Type	Description	
Space	Flag	Set to 1 for space pixels	
Illumination	Parameter	Defines the illumination condition	
		0: N/A (space pixel)	
		1: Night	
		2: Day	
		3: Twilight	
Sunglint	Flag	Set to 1 if Sunglint	
Land_Sea	Parameter	0: N/A (space pixel)	
		1: Land	
		2: Sea	
		3: Coast	
Rough_terrain	Flag	Set to 1 if rough terrain	
High_terrain	Flag	Set to 1 if high terrain	

Processing Conditions

Field	Type	Description			
Satellite_input_data	Parameter	Describes the Satellite input data status			
		0: N/A (space pixel)			
		1: All satellite data are available			
		2: At least one useful satellite channel is missing			
		3: At least one mandatory satellite channel is missing			
NWP_input_data	Parameter	Describes the NWP input data status			
		0: N/A (space pixel or NWP data not used)			
		1: All NWP data are available			
		2: At least one useful NWP field is missing			
		3: At least one mandatory NWP field is missing			
Product_input_data	Parameter	Describes the Product input data status			
		0: N/A (space pixel or Auxiliary data not used)			
		1: All input Product data are available			
		2: At least one useful input Product is missing			
		3: At least one mandatory input Product is missing			
Auxiliary_input_data	Parameter	Describes the Auxiliary input data status (includes products used as			
		input to PGE)			
		0: N/A (space pixel or Auxiliary data not used)			
		1: All Auxiliary data are available			
		2: At least one useful Auxiliary field is missing			
		3: At least one mandatory Auxiliary field is missing			

Quality

Field	Type	Description
Nodata	Flag	Set to 1 if pixel is NODATA
Internal_consistency	Flag	Set to 1 if an internal consistency check has been performed. Internal consistency checks will be based in the comparison of the retrieved meteorological parameter with physical limits, climatological limits, neighbouring data, NWP data, etc.
Temporal_consistency	Flag	Set to 1 if a temporal consistency check has been performed Temporal consistency checks will be based in the comparison of the

 Code:
 NWC/CDOP2/GEO/MFL/SCI/UM/Cloud

 Issue:
 1.0
 Date:
 15 October 2016

 File:
 NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0
 16/56

		retrieved meteorological parameters with data obtained in previous slots.
Quality	Parameter	Retrieval Quality
		0: N/A (no data)
		1: Good
		2: Questionable
		3: Bad
		4: Interpolated

2.2 IMPLEMENTATION OF CLOUD MASK (GEO-CMA)

CMA is extracted by PGE01 (GEO-CMA) component of the NWC/GEO software package. Detailed information on how to run this software package is available in the software user manual ([RD.2.]).

When a new region is defined the user has to manually prepare the CMA model configuration files for this new region using a default CMA model configuration file provided in the NWC/GEO software package (see its content in section 2.3.2).

The CMA execution step is the real-time processing of the satellite images over the region. This process consists in the launch of the command: GEO-CMA by the Task manager.

2.2.1 Manual preparation of Cloud Mask (GEO-CMA) model configuration file for each region

When a new region is defined and added in system and run configuration files, the user must manually prepares the GEO-CMA model configuration files by adapting the GEO-CMA default model configuration file available in the SAFNWC/GEO software package (see its content in section 2.3.2).

The following parameters are configurable in the default GEO-CMA model configuration file:

- CMA_SZSEG (default value: 4): the size of the segment for CMA. [Segments are square boxes in the satellite projection, whose size is expressed as the number of default horizontal resolution pixels (3km at nadir for MSG) of one edge of the square box. The size of the processed regions must be a multiple of the segment size. All the solar and satellite angles, the NWP model forecast values, the RTTOV simulations, the atlas values and the thresholds will be derived over all the processed regions at the horizontal resolution of the segment. Note also that the land/sea atlas will be available at the full default horizontal resolution, allowing the identification of the surface type (land or sea) of all pixels, whatever the segment size. The quality is not very much dependent of the segment size (if lower than 4). Decreasing the segment size will increase the execution time]. Note that sampling rate of NWP_PARAM and RTS_PARAM (see 2.3.2) should be modified accordingly.
- NWP_FREQUENCY_PER_DAY (default value: 4): the number of NWP forecast term per day input by the user. [By default, it is set to 4 (corresponds to NWP fields every 6 hours which is the minimum number authorized by the NWCSAF software). If the user inputs more frequent NWP fields, the NWP_FREQUENCY_PER_DAY key should be changed (for example 8 per day in case NWP fields every 3hours). This key allows to use the NWP fields input by the user avoiding hidden temporal interpolation. In fact, the computation of some IR threshold may need to analyse how NWP parameters has change before and after current slot. This require that the NWP parameters (before and after current slot) should be those input by the user without temporal linear interpolation (which is automatically performed by NWCSAF NWP handling routines).]

Code:NWC/CDOP2/GEO/MFL/SCI/UM/CloudIssue:1.0Date:15 October 2016File:NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0Page:17/56

- IS_ALREADY_RECALIBRATED (default value: FALSE): a flag defining whether satellite data input by the user are already recalibrated using post-launch calibration coefficients (solar channels) and GSICS IR calibration coefficients. [For nearly all users, it shall remain set to FALSE (defaut value). If set to TRUE (for example, CM-SAF may use this option), the RTTOV on line option is desactivated because RTTOV infrared bias files may not be adequate].
- RTTOV_USE (default value: FALSE): a flag defining if the set of tests using thresholds computed on-line with RTTOV should be applied. [RTTOV_USE flag is checked at the execution step. GEO-CMA applies the set of tests using thresholds computed on-line with RTTOV if its value is TRUE. This flag has been made configurable to allow users being blocked by hardware resources to still run GEO-CMA by assigning it to FALSE in the configuration file.]
- RTTOV_USE_COMPUTED_BIAS (default value:FALSE): a flag defining if biases are to be monitored on line when RTTOV-based tests are used. [This key should be set to TRUE in case RTTOV_USE is set to TRUE and RTTOV bias files are not available for the NWP model used by the user (AEMET provides bias files for ECMWF only). But there are some constraints to create thoses bias files (see [AD.11.]).]
- HRVIS_NEED (default value: TRUE): a flag indicating whether the hrvis analysis should be done. [HRVIS_NEED flag is checked at the execution step. GEO-CMA applies the hrvis analysis if its value is TRUE. This flag has been made configurable to allow users being blocked by hardware resources to still run GEO-CMA by assigning it to FALSE in the configuration file.]

2.2.2 Cloud Mask (GEO-CMA) execution step

The GEO-CMA execution step consists in the launch of the command: GEO-CMA by the Task manager with the required parameters: time of slot, region and configuration file name.

2.3 INPUTS AND CONFIGURABLE PARAMETERS FOR CLOUD MASK (GEO-CMA)

2.3.1 List of inputs for Cloud Mask (GEO-CMA)

The input data to the GEO-CMA algorithm are described in this section. Mandatory inputs are flagged, whereas the impact of missing non-mandatory data on the processing are indicated.

• Satellite imagery:

For the current slot (H+00):

The following bi-directional reflectances or brightness temperatures are needed at default horizontal resolution (3km at nadir for MSG/SEVIRI):

R0.6µm	R0.8µm	R1.6µm	T3.8µm	T7.3μm	T8.7μm	T10.8µm	T12.0µm	T13.4μm
Mandatory	Optional	Optional	Mandatory	Optional	Optional	Mandatory	Mandatory	Optional

and at high spatial resolution (1km at nadir for MSG):

(hrvis is one visible channel at around 0.6µm (HRV for MSG))

 Code:
 NWC/CDOP2/GEO/MFL/SCI/UM/Cloud

 Issue:
 1.0
 Date:
 15 October 2016

 File:
 NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0

 Page:
 18/56

The GEO-CMA software checks the availability of channels for each pixel. If non mandatory channels are missing for one pixel, the tests using these channels are not applied, or applied differently (for example, snow detection uses either R1.6µm or T3.8µm; visible channel test over the ocean uses either R0.8µm or R0.6µm) and a result is available for this pixel. No results are provided for pixels where at least one mandatory channel is missing.

For the slot one hour earlier (H-60min):

The following bi-directional reflectances or brightness temperatures or CMA or CT of the scene analysed one hour earlier are optionally needed (at default horizontal resolution) to improve the cloud detection in day-night transition. If one of them misses this improvement is not performed.

R0.6μm _{1h}	T8.7μm _{1h}	T10.8µm _{1h}	T12.0µm _{1h}	CMA _{1h}	CT _{1h}
Optional	Optional	Optional	Optional	Optional	Optional

For the slot around 15 minutes earlier (H-15min, exact delay depending on the satellite):

The following brightness temperatures or CMA or CT of the scene analysed around 15 minutes earlier (exact delay depending satellite) are optionally needed (at default horizontal resolution) to improve the cloud detection of fast moving clouds. If one of them misses this improvement is not performed.

T8.7μm _{15mn}	T10.8µm _{15mn}	T12.0µm _{15mn}	CMA _{15mn}	CT _{15mn}
Optional	Optional	Optional	Optional	Optional

The hrvis bi-directional reflectance of the scene analysed around 15 minutes earlier (exact delay depending satellite) is optionally needed to improve the sub-pixel cumulus cloud detection. If not available this improvement is not performed.

hrvis _{15mn}
Optional

(hrvis is one visible channel at around 0.6µm (HRV for MSG))

The channels are input by the user in specified format (HRIT for MSG), and extracted on the processed region by NWC/GEO software package.

• Sun and satellite angles associated to satellite imagery

This information is mandatory. It is computed by the CMA software itself, using the definition of the region and the satellite characteristics.

• NWP parameters:

The forecast fields of the following parameters, remapped onto satellite images, are used as input:

- o surface temperatures (required to get good quality results over land; but not mandatory)
- o air temperature at 950hPa (alternatively 925hPa). Used to check low level inversion.
- o total water vapour content of the atmosphere,
- o altitude of the NWP model grid (alternatively surface geopotential on the NWP model grid). Required if NWP fields are used as input.

These remapped fields are elaborated by the NWC/GEO software package from the NWP fields input by the user in GRIB format.

Code: NWC/CDOP2/GEO/MFL/SCI/UM/Cloud Issue: 1.0 Date: 15 October 2016 File: NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0 Page: 19/56

The NWP fields are not mandatory: the CMA software replaces missing NWP surface temperatures or total water vapour content of the atmosphere by climatological values extracted from ancillary dataset, but the quality of CMA is then lower.

• RTTOV simulations:

The following parameters simulated by RTTOV are used as input:

- Clear sky top of atmosphere radiance
- Transmittance from surface to TOA
- Clear sky downwelling radiance

These remapped fields are elaborated by the NWC/GEO software package by applying RTTOV to the NWP fields input by the user in GRIB format.

The RTTOV simulations are not mandatory: if not available, the GEO-CMA software does not apply corresponding tests, the GEO-CMA quality being then slightly lower (especially in nightime conditions).

• OSTIA fields:

The following parameters are used as input:

OSTIA SST and local estimated error

High resolution global daily bulk SST fields (OSTIA) are input by the user who can obtain them from MyOcean service desk (see http://www.myocean.eu.org). They are used in conjunction with RTTOV simulations.

These OSTIA fields are not mandatory: if not available the RTTOV simulations are not used over ocean and the CMA software does not apply corresponding tests, the GEO-CMA quality being then slightly lower (especially in nightime conditions).

• RTTOV bias files:

Rttov bias files are used as input. They can be downloaded from AEMET ftp server. They are valid only for ECMWF model.

These files are not mandatory. If not available, the bias can be computed by GEO-CMA (the processed region needs to contain large enough area covered by oceanic surfaces (see [AD.11.]). If this computation is not possible, the GEO-CMA does not apply test using RTTOV simulation and the GEO-CMA quality being then slightly lower (especially in nightime conditions).

Ancillary data sets:

The following ancillary data, remapped onto satellite images, are mandatory:

- Land/sea atlas
- Land/sea/coast atlas
- o Elevation atlas
- o Monthly SST minimum and standard deviation values climatology
- O Monthly mean 0.6μm atmospheric-corrected reflectance climatology (land)
- Monthly mean visible surface reflectance climatology for hrvis processing (land, (for MSG: HRV large band surface reflectance)) (derived from monthly MODIS black-sky albedos at 0.55 μm, 0.67 μm and 0.86μm)
- o Land cover database (BATS)
- o Monthly integrated atmospheric water vapor content climatology

 Code:
 NWC/CDOP2/GEO/MFL/SCI/UM/Cloud

 Issue:
 1.0
 Date:
 15 October 2016

 File:
 NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0

 Page:
 20/56

- o Monthly climatology of mean air temperature at 1000 hPa
- o Monthly thermal emissivity at IR wavelength

These ancillary data are available in the NWC/GEO software package on a global scale; a SAFNWC tool allows their remapping on full disk for each new satellite; they are finally extracted on the processed region by the CMA software itself.

Coefficients's file (also called threshold tables), containing satellite-dependent values and look-up tables for IR thresholds and for solar channels' thresholds, are available in the NWC/GEO software package, and are needed by the CMA software.

2.3.2 CMa Model Configuration File

The CMa model configuration file contains all the coefficients and constants required for the derivation of the GEO-CMA product. The model configuration file must be placed in the \$SAFNWC/config directory. The file contains the following information:

 Code:
 NWC/CDOP2/GEO/MFL/SCI/UM/Cloud

 Issue:
 1.0
 Date:
 15 October 2016

 File:
 NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0
 21/56

Keyword	Description	Type	Default Value(s)
PGE_ID	Identifier of the PGE	Chain of	GEO-CMA
		characters	
SEV_BANDS	SEVIRI channels to be used by CMA	Chain of	HRV, VISO6, VISO8, NIR16,
		characters	IR38,WV73,IR87,IR108,IR120 , IR134
INT_PRODUCT	Enables/disables the generation of	Chain of	NO NO
	intermediate products	characters	
CMA_SZSEG	Size of CMA segments expressed in	Integer	4
	SEVIRI coordinates (same value for lines	meger	
	and columns)		
HRV_NEED	Flag to indicate if HRVIS band is to be used	Chain of	TRUE
	Thug to indicate it that is to be used	characters	
RTTOV_USE	Flag to indicate if temporal information	Chain of	FALSE
	from previous scenes and products are to be	characters	
	used	Characters	
RTTOV_USE_COMPUTED_	Flag defining if biases are to be monitored	Chain of	FALSE
BIAS	on line when RTTOV-based tests are used	characters	
IS_ALREADY_RECALIBR	Flag defining whether satellite data input by	Chain of	FALSE
ATED	the user are already recalibrated using post-	characters	
	launch and GSICS calibration coefficients		
NWP_FREQUENCY_PER_D	Number of NWP forecast term per day	Integer	4
AY	input by user		
NWP_PARAM	Parameter :Temperature at surface level	Chain of	NWP_ST
	sampling rate : (=segment size CMA_SZSEG)	characters	4 BLM
	interpolation method.		BIN
NWP_PARAM	Parameter :Temperature at pressure levels	Chain of	NWP_T
	sampling rate : (=segment size CMA_SZSEG)	characters	4 BLI
	interpolation method.		
NWP_PARAM	Parameter :Total column water vapour	Chain of	NWP_TCWV
	sampling rate : (=segment size CMA_SZSEG)	characters	4 MAX
	interpolation method.		
NWP_PARAM	Parameter :Altitude of the model at surface	Chain of	NWP_ALTM 4
	sampling rate : (=segment size CMA_SZSEG)	characters	BLI
	interpolation method.		
NWP_PARAM	Parameter : Geopotential at surface	Chain of	NWP_SGEOP 4
	sampling rate : (=segment size CMA_SZSEG)	characters	BLI
	interpolation method		
RTS_PARAM	Parameter : Clear sky TOA radiance	Chain of	RTS_CLEAR
	sampling rate : (=segment size CMA_SZSEG)	characters	BLI
	interpolation method		
RTS_PARAM	Parameter: Transmittance from surface to	Chain of	RTS_TAUTOTAL 4
	TOA	characters	BLI
	sampling rate : (=segment size CMA_SZSEG)		
	interpolation method		
RTS_PARAM	Parameter : Clear sky down-welling	Chain of	RTS_DNCLEAR 4
	radiance	characters	BLI
	sampling rate : (=segment size CMA_SZSEG)		
	interpolation method		

Table 5: CMa default Model Configuration File description

2.3.3 Configurable parameters for Cloud Mask (GEO-CMA)

The following configurable parameters are available in the default CMA model configuration file:

Code: NWC/CDOP2/GEO/MFL/SCI/UM/Cloud Issue: 1.0 Date: 15 October 2016 File: NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0 Page: 22/56

- CMA_SZSEG: the size of the segment is configurable (see its definition in section 2.2.1). Its default value is 4. Information on how to change the size of the segment can be found in section 2.2.1.
- NWP_FREQUENCY_PER_DAY: the number of NWP forecast term per day is configurable (see its definition in section 2.2.1). Its default value is 4. Information on how to change this number of NWP can be found in section 2.2.1.
- IS_ALREADY_RECALIBRATED: the flag, defining whether satellite data input by user are already recalibrated with post-launch calibration coefficients (solar channels) and GSICS IR calibration coefficients, is configurable (see its definition in section 2.2.1). Its default value is FALSE. Information on how to change this value can be found in section 2.2.1.
- RTTOV_USE: the flag defining if RTTOV is to be used on line (to allow a better detection of low or thin clouds) is configurable (see its definition in section 2.2.1). Its default value is FALSE. Information on how to change this value can be found in section 2.2.1.
- RTTOV_USE_COMPUTED_BIAS: the flag defining if biases are to be monitored on line, is configurable (see its definition in section 2.2.1). Its default value is FALSE. Information on how to change this value can be found in section 2.2.1.
- HRVIS_NEED: the flag indicating if hrvis data have to be used (to allow enhanced sub-pixel cumulus detection) is configurable (see its definition in section 2.2.1). Its default value is TRUE. Information on how to change this value can be found in section 2.2.1.

2.4 CLOUD MASK (GEO-CMA) VALIDATION

2.4.1 Summary of Cloud Mask (GEO-CMA) validation results

The following table summarises the validation results of the current version. More details can be obtained from the validation report for cloud products ([RD.1.]).

GEO-CMA flags	Validated accuracy
GEO-CMA cloud detection	
If validated over European areas using	POD: 97.1%
SYNOP observations If validated over full disk using SYNOP and SHIP observations	POD: 94.5%
GEO-CMA dust flag If validated over sea and Africa for solar elevation larger than 20 degrees using interactive targets	POD: 55.5% over sea 58.5% over land

Table 6: Summary of validation results of the current CMA version (POD stands for Probability Of Detection)

Code:NWC/CDOP2/GEO/MFL/SCI/UM/CloudIssue:1.0Date:15 October 2016File:NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0Page:23/56

2.4.2 Typical known problems and recommendation for use

The following problems may be encountered:

- Low clouds may be not detected in case low solar elevation, over both sea and land.
- It may happen that large areas of low clouds are not detected in night-time conditions over land. This can be the case in "warm sectors", but also in areas viewed with high satellite zenith angles or if the low clouds are surmounted by very thin cirrus.
- Snowy grounds are not detected at night-time and therefore may confused either with low clouds or cloud free surface. This drawback has been reduced with v3.1 in release 2011.
- False detection of volcanic ash clouds happens especially in daytime conditions (over low clouds and desertic surfaces), but also in night-time (over cold clouds). The volcanic ash clouds detection is not performed in case low solar elevation.
- Over land, dust cloud detection is performed only at daytime. Over land, dust clouds are not
 well detected when the sun is low or if they are too thin. Over sea, some dust areas may not
 be detected (especially the thinnest parts). Moreover, some wrong detection may be observed
 in oceanic regions, especially at nighttime near Namibia coast and occasionally over the
 South Atlantic (at latitude larger than 50 degrees).

The CMa product may be used to identify cloud-free surfaces for oceanic or continental surface parameters retrieval. Nevertheless, as some clouds remains undetected and to account for artefacts such as shadows or aerosols, the user should apply a post-processing which could include:

- the spreading of the cloud mask that should allow to detect cloud edges and mask shadows or moist areas near cloud edges
- the use of the cloud mask quality flag not to compute surface parameters in bad quality cloud free areas
- the implementation of an additional filtering based on the temporal variation around the current slot

The only aim of snow detection by CMA is to limit the confusion with clouds. The users interested in snow cover should rather use H-SAF daily snow products and not the CMA snow category which should be considered as an additional information to help the image interpretation.

2.5 EXAMPLE OF CLOUD MASK (GEO-CMA) VISUALISATION

It is important to note that the GEO-CMA product is not just images, but numerical data. At first hand, the CMA is rather thought to be used digitally (together with the appended flags (quality, dust detection, volcanic ash detection)) as input to mesoscale analysis models, objective Nowcasting schemes, but also during the extraction of other NWC SAF products (CT for example).

Colour palettes are included in CMA NetCdF files, allowing an easy visualisation of CMA main categories, dust and volcanic ash flags.

No example of CMA main categories's visualisation are given, as it is thought that the user will be more interested to visualize the CT product which can be seen as a refinement.

Example of visualisation of the dust cloud and the volcanic ash cloud flags superimposed on infrared images are given in Figure 1 and Figure 2 , using SEVIRI and MODIS imagery.

 Code:
 NWC/CDOP2/GEO/MFL/SCI/UM/Cloud

 Issue:
 1.0
 Date:
 15 October 2016

 File:
 NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0
 24/56

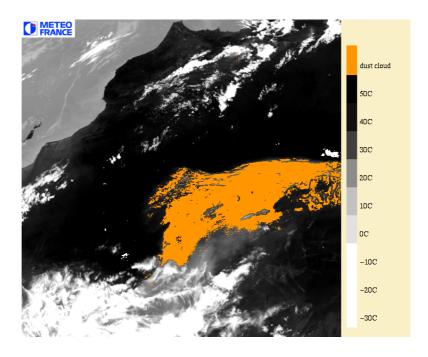


Figure 1: Example of SEVIRI dust cloud flag superimposed on a 10.8 μ m infrared image: dust cloud over North Africa on 14th July 2003 at 13h00 UTC.

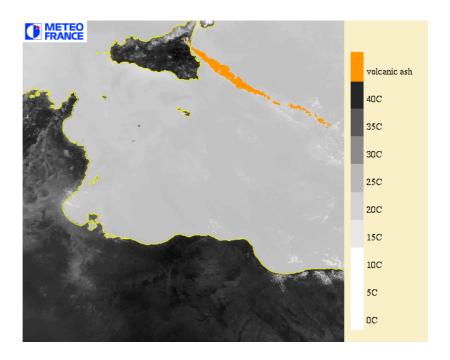


Figure 2: Example of MODIS volcanic ash cloud superimposed on a 10.8µm infrared image: Etna eruption on 22th July 2001 at 9h55 UTC.

 Code:
 NWC/CDOP2/GEO/MFL/SCI/UM/Cloud

 Issue:
 1.0
 Date:
 15 October 2016

 File:
 NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0
 25/56

3 CLOUD TYPE (GEO-CT) PRODUCT

3.1 DESCRIPTION OF CLOUD TYPE (GEO-CT) PRODUCT

3.1.1 Goal of Cloud Type (GEO-CT) product

The cloud type (CT), developed within the NWC SAF context, mainly aims to support nowcasting applications. The main objective of this product is to provide a detailed cloud analysis. It may be used as input to an objective meso-scale analysis (which in turn may feed a simple nowcasting scheme), as an intermediate product input to other products, or as a final image product for display at a forecaster's desk. The CT product is essential for the generation of the cloud top temperature and height product, cloud microphysics and for the identification of precipitation clouds. Finally, it is also essential for the computation of radiative fluxes over sea or land, which are SAF Ocean & Sea Ice products.

The CT product therefore contains information on the major cloud classes: fractional clouds, semitransparent clouds, high, medium and low clouds (including fog) for all the pixels identified as cloudy in a scene. A second priority is the distinction between convective and stratiform clouds (implementation not planned before 2017).

3.1.2 Outline of Cloud Type (GEO-CT) product

The algorithm has been designed to be applicable to imagers on board meteorological geostationary satellites. The imagers may have different set of channels possibly at different horizontal resolutions. The lowest native resolution of the radiometer (3km at nadir for MSG/SEVIRI), which is for most imagers on board present and future meteorological geostationary satellites the horizontal resolution of all IR channels and some solar channels, will be chosen as the default horizontal resolution. Solar channels may be available at higher horizontal resolution (1km at nadir for HRV). In this release, the process is applied to all useful channels at the default horizontal resolution (high resolution channels being averaged at this resolution). We use generic labels in this document (for example, T3.8µm, T8.7µm, T10.8µm, T12.0µm, R0.6µm, R0.8µm and R1.6µm), the exact central wavelengths of the corresponding channels depending on the satellite. The list of available labels depends on the satellite; the list of mandatory channels is listed in 3.3.1.

The CT algorithm is a threshold algorithm applied at the pixel scale, based on the use of CMA and spectral & textural features computed from the multispectral satellite images and compared with a set of thresholds.

The set of thresholds to be applied depends mainly on the illumination conditions, whereas the values of the thresholds themselves may depend on the illumination, the viewing geometry, the geographical location and NWP data describing the water vapour content and a coarse vertical structure of the atmosphere.

Opaque clouds are first separated from semi-transparent and from fractional (sub-pixel) clouds using brightness temperature differences (T10.8μm-T12.0μm, T8.7μm-T10.8μm or T3.9μm-T10.8μm) and R0.6μm (at daytime). Opaque clouds are then separated in very low, low, mid-level, high or very high clouds using their T10.8mm brightness temperatures which are compared to NWP forecast air

 Code:
 NWC/CDOP2/GEO/MFL/SCI/UM/Cloud

 Issue:
 1.0
 Date:
 15 October 2016

 File:
 NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0

 Page:
 26/56

temperatures at various pressure levels. Details are available in the algorithm theoretical basis document for cloud products ([AD.11.])

3.1.3 Description of Cloud Type (GEO-CT) output

The content of the CT output (in NetCdF format) is described in the Data Output Format document ([AD.8.]), a summary is given below:

Container				Content	
GEO-CT	SAFNWC GEO	CT Clou	CT Cloud Type		
		CI.			
		Class		Cloud Type category	
		1		Cloud-free land	
		2		Cloud-free sea	
		3		Snow over land	
	<u> </u>	4		Sea ice	
		5	Very low clouds		
	<u> </u>	6		Low clouds Mid-level clouds	
	<u> </u>	7			
	<u> </u>	8		High opaque clouds	_
		9		Very high opaque clouds	+
		10		Fractional clouds	-
		11		High semitransparent thin clouds	-
		12		High semitransparent meanly thick clouds	4
	<u> </u>	13	TT. :	High semitransparent thick clouds	_
		14	Hıg	h semitransparent above low or medium clouds	_
		15		High semitransparent above snow/ice	4
		illValue		No data or corrupted data	
EO-CT	SAFNWC GEO	CT Strat	itorn	n/Cumuliform Cloud Detection	
CUMULIFORM		CI			
		Cla		Stratiform/Cumuliform Cloud category	
			1	Stratiform status	
			2	Cumuliform status	
			3	Mixed status	
			4	Cloud-free	
		FillVa	5	Undefined (separability problem)	
TEO CT	CAENWC CEO			No data or corrupted data	
EO-CT MULTILAYER	SAFNWC GEO	C1 Mun	maye	r Cloud Detection	
MULTILATER		Cla	200	Multilayor Claud astagony	
		Cla	0	Multilayer Cloud category No multilayer detected	
			1	Multilayer detected	
			1 2	Multilayer detected Cloud free	
		EillV	1 2 3	Multilayer detected Cloud free Undefined (separability problem)	
FO CT	6 hits indicating		1 2 3 7alue	Multilayer detected Cloud free Undefined (separability problem)	
	6 bits indicating		1 2 3 7alue	Multilayer detected Cloud free Undefined (separability problem)	
		(if set to	1 2 3 7alue 1)	Multilayer detected Cloud free Undefined (separability problem) No data or corrupted data	
	Bit 0: L	(if set to	1 2 3 7alue 1)	Multilayer detected Cloud free Undefined (separability problem) No data or corrupted data mal inversion in NWP field	
	Bit 0: L Bit 1: T	(if set to Low level Tropopau	1 2 3 Yalue 1) therr	Multilayer detected Cloud free Undefined (separability problem) No data or corrupted data mal inversion in NWP field mperature available from NWP field	
GEO-CT _status_flag	Bit 0: L Bit 1: T Bit 2: F	(if set to Low level Tropopau R1.38μm	1 2 3 7alue 1) therr se terr used	Multilayer detected Cloud free Undefined (separability problem) No data or corrupted data mal inversion in NWP field mperature available from NWP field for cirrus identification	
	Bit 0: L Bit 1: T Bit 2: F Bit 3: H	(if set to Low level Propopau R1.38µm High reso	1 2 3 7alue 1) therruse terrused lution	Multilayer detected Cloud free Undefined (separability problem) No data or corrupted data mal inversion in NWP field mperature available from NWP field	

 Code:
 NWC/CDOP2/GEO/MFL/SCI/UM/Cloud

 Issue:
 1.0
 Date:
 15 October 2016

 File:
 NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0

 Page:
 27/56

Geophysical Conditions

Field	Type	Description
Space	Flag	Set to 1 for space pixels
Illumination	Parameter	Defines the illumination condition
		0: N/A (space pixel) 1: Night 2: Day 3: Twilight
Sunglint	Flag	Set to 1 if Sunglint
Land_Sea	Parameter	0: N/A (space pixel) 1: Land 2: Sea 3: Coast
Rough_terrain	Flag	Set to 1 if rough terrain
High_terrain	Flag	Set to 1 if high terrain

Processing Conditions

Field	Type	Description	
Satellite_input_data	Parameter	Describes the Satellite input data status	
		0: N/A (space pixel)	
		1: All satellite data are available	
		2: At least one useful satellite channel is missing	
		3: At least one mandatory satellite channel is missing	
NWP_input_data	Parameter	Describes the NWP input data status	
		0: N/A (space pixel or NWP data not used)	
		1: All NWP data are available	
		2: At least one useful NWP field is missing	
		3: At least one mandatory NWP field is missing	
Product_input_data	Parameter	Describes the Product input data status	
		0: N/A (space pixel or Auxiliary data not used)	
		1: All input Product data are available	
		2: At least one useful input Product is missing	
		3: At least one mandatory input Product is missing	
Auxiliary_input_data	Parameter	Describes the Auxiliary input data status (includes products used as	
		input to PGE)	
		0: N/A (space pixel or Auxiliary data not used)	
		1: All Auxiliary data are available	
		2: At least one useful Auxiliary field is missing	
		3: At least one mandatory Auxiliary field is missing	

Quality

Field	Type	Description	
Nodata	Flag	Set to 1 if pixel is NODATA	
Internal_consistency	Flag	Set to 1 if an internal consistency check has been performed. Internal consistency checks will be based in the comparison of the retrieved meteorological parameter with physical limits, climatological limits, neighbouring data, NWP data, etc.	
Temporal_consistency	Flag	Set to 1 if a temporal consistency check has been performed Temporal consistency checks will be based in the comparison of t retrieved meteorological parameters with data obtained in previouslots.	

 Code:
 NWC/CDOP2/GEO/MFL/SCI/UM/Cloud

 Issue:
 1.0
 Date:
 15 October 2016

 File:
 NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0

 Page:
 28/56

Quality	Parameter	Retrieval Quality
		0: N/A (no data)
		1: Good
		2: Questionable
		3: Bad
		4: Interpolated

3.2 IMPLEMENTATION OF CLOUD TYPE (GEO-CT)

CT is extracted by PGE02 (GEO-CT) component of the NWC/GEO software package. Detailed information on how to run this software package is available in the software user manual ([RD.2.]).

When a new region is defined the user has to manually prepare the CT model configuration files for this new region using a default CT model configuration file provided in the NWC/GEO software package (see its content in section 3.3.2).

The CT execution step is the real-time processing of the satellite images over the region. This process consists in the launch of the command: GEO-CT by the Task manager.

3.2.1 Manual preparation of Cloud Type (GEO-CT) model configuration file for each region

When a new region is defined and added in system and run configuration files, the user must manually prepares the GEO-CT model configuration files by adapting the GEO-CT default model configuration file available in the SAFNWC/GEO software package (see its content in section 3.3.2).

The following parameter is configurable in the default GEO-CT model configuration file:

• CT_SZSEG (default value: 4): the size of the segment. This default value may be manually changed. [Segments are square boxes in the satellite projection, whose size is expressed as the number of default horizontal resolution pixels (3km for MSG) of one edge of the square box. The size of the processed regions must be a multiple of the segment size. All the solar and satellite angles, the NWP model forecast values, the atlas values and the thresholds will be derived over all the processed regions at the horizontal resolution of the segment. Note also that the land/sea atlas will be available at the full default horizontal resolution, allowing the identification of the surface type (land or sea) of all pixels, whatever the segment size. The quality is not very much dependent on the segment size (if lower than 4). Decreasing the segment size will increase the execution time]. Note that sampling rate of NWP_PARAM and RTS PARAM (see 2.3.2) should be modified accordingly.

3.2.2 The Cloud Type (GEO-CT) execution step

The GEO-CT execution step consists in the launch of the command: GEO-CT by the Task manager with the required parameters: time of slot, region and configuration file name.

 Code:
 NWC/CDOP2/GEO/MFL/SCI/UM/Cloud

 Issue:
 1.0
 Date:
 15 October 2016

 File:
 NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0
 29/56

3.3 INPUT AND CONFIGURABLE PARAMETERS FOR CLOUD TYPE (GEO-CT)

3.3.1 List of inputs for Cloud Type (GEO-CT)

The input data to the CT algorithm are described in this section. Mandatory inputs are flagged, whereas the impact of missing non-mandatory data on the processing are indicated.

• Satellite imagery:

The following bi-directional reflectances or brightness temperatures are needed at default horizontal resolution (3km at nadir for MSG):

R0.6µm	Т3.8μm	Т7.3μm	Т8.7μm	T10.8µm	T12.0μm
Mandatory	Mandatory	Optional	Optional	Mandatory	Mandatory

The CT software checks the availability of these channels for each pixel; no results are available for pixels where at least one mandatory channel is missing.

The channels are input by the user in specified format (HRIT for MSG), and extracted on the processed region by NWC/GEO software package.

• CMA cloud categories

The CMA cloud categories are mandatory. They are computed by the CMA software.

• Sun and satellite angles associated to satellite imagery

This information is mandatory. It is computed by the CT software itself, using the definition of the region and the satellite characteristics.

• NWP parameters:

The forecast fields of the following parameters, remapped onto satellite images, are used as input:

- o surface temperatures
- o air temperature at 950hPa (alternatively 925hPa) (to check low level inversion), 850hPa, 700hPa, 500hPa and at tropopause level
- o total water vapour content of the atmosphere,
- altitude of the NWP model grid (alternatively surface geopotential of the NWP model grid). Required if NWP fields are used as input.

These remapped fields are elaborated by the NWC/GEO software package from the NWP fields input by the user in GRIB format.

The NWP fields are not mandatory. The CT software replaces missing NWP surface temperatures, air temperature at 850hPa, 700hPa, 500hPa or total water vapour content of the atmosphere by climatological values extracted from ancillary dataset. An alternative method is used in case of missing NWP air temperature at tropopause level. The quality of CT is lower if some NWP fields are missing.

Ancillary data sets:

The following ancillary data, remapped onto satellite images, are mandatory:

o Land/sea atlas

 Code:
 NWC/CDOP2/GEO/MFL/SCI/UM/Cloud

 Issue:
 1.0
 Date:
 15 October 2016

 File:
 NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0

 Page:
 30/56

- Elevation atlas
- o Monthly minimum SST climatology
- o Monthly mean 0.6μm atmospheric-corrected reflectance climatology (land)
- o Monthly integrated atmospheric water vapor content climatology
- o Monthly climatology of mean air temperature at 1000hPa, 850hPa, 700hPa, 500hPa.

These ancillary data are available in the NWC software package on a global scale; a SAFNWC tool allows their remapping on full disk for each new satellite; they are finally extracted on the processed region by the CT software itself.

One coefficients's file (also called threshold table), containing satellite-dependent values and lookup tables for thresholds, is available in the NWC software package, and is needed by the CT software.

3.3.2 CT Model Configuration File

The CT model configuration file contains all the coefficients and constants required for the derivation of the GEO-CT product. The model configuration file must be placed in the \$SAFNWC/config directory. The file contains the following information:

Keyword	Description	Type	Default Value(s)
PGE_ID	Identifier of the PGE	Chain of	GEO-CT
		characters	
SEV_BANDS	SEVIRI channels to be used by CT	Chain of	VIS06, IR38, WV73, IR87, IR108
		characters	,IR120
INT_PRODUCT	Enables/disables the generation of	Chain of	NO
	intermediate products	characters	
CT_SZSEG	Size of CT segments expressed in SEVIRI	Integer	4
	coordinates (same value for lines and		
	columns)		
NWP_PARAM	Parameter :Temperature at surface level	Chain of	NWP_ST
	<pre>sampling rate : (=segment size CT_SZSEG)</pre>	characters	BLM
	interpolation method.		
NWP_PARAM	Parameter :Temperature at pressure levels	Chain of	NWP_T
	sampling rate : (=segment size CT_SZSEG)	characters	BLI
	interpolation method.		
NWP_PARAM	Parameter: Temperature at tropopause level	Chain of	NWP_TT
	sampling rate : (=segment size CT_SZSEG)	characters	BLI
	interpolation method.		
NWP_PARAM	Parameter: Total column water vapour	Chain of	NWP_TCWV
	sampling rate : (=segment size CT_SZSEG)	characters	MAX
	interpolation method.		
NWP_PARAM	Parameter :Altitude of the model at surface	Chain of	NWP_ALTM 4
	sampling rate : (=segment size CT_SZSEG)	characters	BLI
	interpolation method.		
NWP_PARAM	Parameter: Geopotential at surface	Chain of	NWP_SGEOP
	sampling rate : (=segment size CT_SZSEG)	characters	BLI
	interpolation method		

Table 7: CT default Model Configuration File description

 Code:
 NWC/CDOP2/GEO/MFL/SCI/UM/Cloud

 Issue:
 1.0
 Date:
 15 October 2016

 File:
 NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0

 Page:
 31/56

3.3.3 Configurable parameters for Cloud Type (GEO-CT)

The following configurable parameters is available in the default CT model configuration file:

• CT_SZSEG: the size of the segment is configurable (see its definition in section 3.2.1). Its default value is 4. Information on how to change the size of the segment can be found in section 3.2.1).

3.4 CLOUD TYPE (GEO-CT) VALIDATION

3.4.1 Summary of Cloud Type (GEO-CT) validation results

The following table summarises the validation results of the current version for the CT cloud type. More details can be obtained from the validation report for cloud products ([RD.1.]).

GEO-CT	Validated accuracy
GEO-CT cloud type If validated over full disk (the user accuracy is defined as the probability of a pixel being classified into a category to really belong to this category)	User accuracy for low opaque, high opaque, semi-transparent high clouds: between 79% and 96% depending on illumination

Table 8: Summary of validation results of the current CT version

3.4.2 Typical known problems and recommendation for use

The following problems may be encountered (for wrong cloud detection, please refer to paragraph 2.4.2):

- Very thin cirrus are often classified as fractional clouds.
- Very low clouds may be classified as medium clouds in case strong thermal inversion.
- Low clouds surmounted by thin cirrus may be classified as medium clouds.

As already stated in 2.4.2, the users interested in snow cover should rather use H-SAF daily snow products and not the CT snow category which should be considered as an additional information to help the image interpretation.

3.5 Example of Cloud Type (GEO-CT) visualisation

It is important to note that the CT product is not just an image, but numerical data. At first hand, the CT is rather thought to be used digitally (together with the appended flags (quality, multilayer, stratiform/cumuliform (not yet available))) as input to mesoscale analysis models, objective Nowcasting schemes, but also in the extraction of other NWC SAF products (CTTH or CMIC for example).

 Code:
 NWC/CDOP2/GEO/MFL/SCI/UM/Cloud

 Issue:
 1.0
 Date:
 15 October 2016

 File:
 NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0

 Page:
 32/56

Colour palettes are included in CT NetCdF files, thus allowing an easy visualisation of CT cloud type categories as illustrated on Figure 3.

The user may be interested in visualising all the available classes as displayed on a SEVIRI example in Figure 3, or highlight one or a few categories suitable for the application of interest. Product's animation will be a help for the user to interpret the visualized CT, and to identify artefacts (for example, the replacement of a snowy area by a low cloud between two successive pictures may be due only to the transition from day to night, as the snow detection is not possible at nighttime).

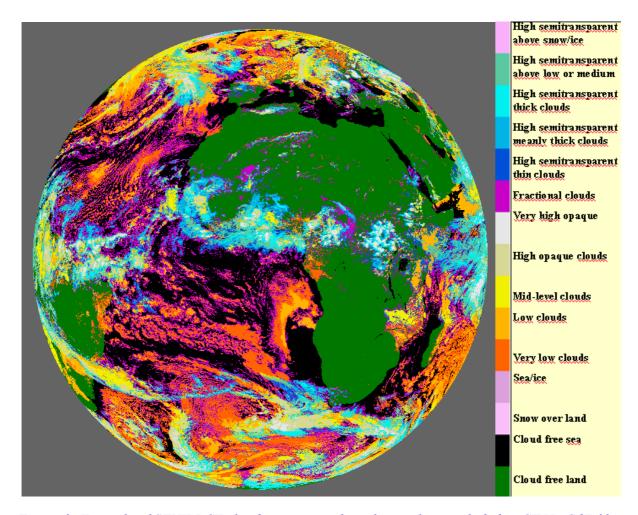


Figure 3: Example of SEVIRI CT cloud type using the colour palette included in CT NetCdF files.

 Code:
 NWC/CDOP2/GEO/MFL/SCI/UM/Cloud

 Issue:
 1.0
 Date:
 15 October 2016

 File:
 NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0

 Page:
 33/56

4 CLOUD TOP TEMPERATURE AND HEIGHT (GEO-CTTH) PRODUCT

4.1 DESCRIPTION OF CLOUD TOP TEMPERATURE AND HEIGHT (GEO-CTTH) PRODUCT

4.1.1 Goal of Cloud Top Temperature and Height (GEO-CTTH) product

The cloud top temperature and height (CTTH), developed within the NWC SAF context, aims to support nowcasting applications. This product contributes to the analysis and early warning of thunderstorm development. Other applications include the cloud top height assignment for aviation forecast activities. The product may also serve as input to mesoscale models or to other NWC SAF product generation elements.

The CTTH product contains information on the cloud top temperature and height for all pixels identified as cloudy in the satellite scene.

4.1.2 Outline of Cloud Top Temperature and Height (GEO-CTTH) algorithm

The algorithm has been designed to be applicable to imagers on board meteorological geostationary satellites. The imagers may have different set of channels possibly at different horizontal resolutions. The lowest native resolution of the radiometer (3km at nadir for MSG/SEVIRI), which is for most imagers on board present and future meteorological geostationary satellites the horizontal resolution of all IR channels and some solar channels, will be chosen as the default horizontal resolution. Solar channels may be available at higher horizontal resolution (1km at nadir for HRV). In this release, the process is applied to all useful channels at the default horizontal resolution (high resolution channels being averaged at this resolution). We use generic labels in this document (for example, Rad6.2 μ m, Rad7.3 μ m, Rad13.4 μ m, T10.8 μ m, T12.0 μ m (Rad and T stand for radiance and brightness temperatures)), the exact central wavelengths of the corresponding channels depending on the satellite. The list of available labels depends on the satellite; the used and mandatory channels are listed in 4.3.1.

Cloud top pressure or height are derived from their IR brightness temperatures by comparison to simulated IR brightness temperatures computed from temperature and humidity vertical profiles forecast by NWP using a IR radiative transfer model (RTTOV). Exact retrieval method depends on cloud type as semi-transparency correction using window and sounding IR channels may be needed.

The different steps of the processing, applied to cloud-classified image at default horizontal resolution (3km at nadir for MSG), are summarized below. The exact process applied to each pixel depends on the availability of NWP and satellite imagery data.

If all mandatory NWP and satellite data are available (see list of input for CTTH):

The following process is then applied:

• RTTOV radiative transfer model (Eyre, 1991) is applied using NWP temperature and humidity vertical profile to simulate cloud free and overcast (clouds successively on each vertical pressure levels) radiances and brightness temperatures for window channels (10.8μm, and 12.0μm) and sounding channels (6.2μm, 7.3μm, 13.4μm for MSG/SEVIRI). This process is performed in each

 Code:
 NWC/CDOP2/GEO/MFL/SCI/UM/Cloud

 Issue:
 1.0
 Date:
 15 October 2016

 File:
 NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0

 Page:
 34/56

segment of the image (the size of the segment is defined by the user, the default value being 4*4 pixels). The vertical profiles used are temporally interpolated to the exact slot time using the two nearest in time NWP fields input by the user.

- The techniques used to retrieve the cloud top pressure depend on the cloud's type (as available in CT product):
 - For very low, low or medium thick clouds: The cloud top pressure is retrieved on a pixel basis and corresponds to the best fit between the simulated and the measured 10.8µm brightness temperatures. The simulated brightness temperatures are available at the segment resolution. In case of the presence of a low level thermal inversion in the forecast NWP fields, the very low, low or medium clouds are assumed to be above the thermal inversion only if their brightness temperatures are colder than the air temperature below the thermal inversion minus an offset whose value depends on the nature of thermal inversion (dry air above the inversion level or not).
 - For high thick clouds: a method called the radiance ratioing method (see the next bullet for further explanation of this method) is first applied to remove any remaining semi-transparency that could have been undetected by the cloud type scheme. In case of failure, the method defined for medium opaque clouds is then applied.
 - For high semi-transparent clouds: The 10.8μm infrared brightness temperatures are contaminated by the underlying surfaces and cannot be used as for opaque clouds. A correction of semi-transparency is applied, which requires the use of two infrared channels: the 10.8μm window channel and a sounding (6.2μm, 7.3μm, 13.4μm for MSG) channel. The basis is that clouds have a stronger impact in a window channel than in a sounding channel. The following process is implemented:
 - The H₂O/IRW intercept method, based on a window (10.8μm) and sounding (13.4μm, 7.3μm or 6.2μm for MSG) radiance bi-dimensional histogram analysis, is first applied. The histograms are built in boxes of 32*32 pixels centred on each segment of the image (whose size is defined by the user, the default value being 4*4 pixels). It therefore allows the retrieval of cloud top pressure at the segment horizontal resolution (i.e., by default 4*4 pixels). This method is successively applied using the radiances of sounding channels (7.3μm, 6.2μm and 13.4μm for MSG), the final retrieved cloud pressure being the minimum cloud top pressures obtained using single sounding channel.
 - If no result can be obtained with the H₂O/IRW intercept method, the radiance ratioing method is then applied at a pixel basis to retrieve the cloud top pressure from the radiances of two channels: a window channel (10.8μm) and a sounding channel (for MSG, successively 7.3μm, 6.2μm and 13.4μm).
 - If the radiance ratioing technique leads to cloud top temperatures warmer than the corresponding 10.8µm brightness temperatures, the method for thick clouds is used instead.
 - For fractional clouds: No technique is proposed in the current version for low broken clouds. The sounding channels are nearly unaffected by broken low clouds and are therefore useless; the infrared channels at 10.8µm and 12.0µm are contaminated by the surface and cannot therefore be used as for opaque clouds.

Code:NWC/CDOP2/GEO/MFL/SCI/UM/CloudIssue:1.0Date:15 October 2016File:NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0Page:35/56

- A gap-filling procedure is applied in semi-transparent cloud top pressure field: in each box of 32x32 pixels, a cloud top pressure is computed as the average pressure of all pixels containing semi-transparent clouds inside the current and the eight surrounding boxes. This average cloud top pressure is then assigned to all pixels of the current box containing semi-transparent clouds and having no retrieved cloud top pressure.
- Cloud top temperature and altitude (above sea level) are then computed from their pressure using general modules. During these processes, the atmospheric vertical profiles are temporally interpolated to the exact slot time using the two nearest in time NWP outputs fields.
- Effective cloudiness (defined as the fraction of the field of view covered by cloud (the cloud amount) multiplied by the cloud emissivity in the 10.8µm window channel) is also computed during the processing. It is equal to 1.0 for thick clouds and takes a value between 0. and 1. for semi-transparent clouds.

<u>In case some mandatory NWP or satellite data are missing (see list of inputs for CTTH):</u>

Cloud top temperatures of very low, low, medium and high clouds are then computed by applying a climatological atmospheric absorption correction to the 10.8µm brightness temperature using look-up tables. The cloud top pressure and height are not retrieved.

Details are available in the algorithm theoretical basis document for cloud products ([AD.11.])

4.1.3 Description of Cloud Top Temperature and Height (GEO-CTTH) output

The content of the CTTH output (in NetCdF format) is described in the Data Output Format document ([AD.8.]), a summary is given below:

Container	Content
GEO-CTTH _PRES	SAFNWC GEO CTTH Cloud Top Pressure
	GEO-CTTH_PRES(Pa) = scale_factor * Counts + add_offset
	where:
	scale_factor = 10.0
	$add_offset = 0.0$
GEO-CTTH _ALTI	SAFNWC GEO CTTH Cloud Top Altitude
	GEO-CTTH_ALTI(m) = scale_factor * Counts + add_offset
	where:
	scale_factor = 1.0
	add_offset = -2000.0
GEO-CTTH _TEMPE	SAFNWC GEO CTTH Cloud Top Temperature
_1EMIL	GEO-CTTH_TEMPE(K) = scale_factor * Counts + add_offset
	where:
	scale_factor = 0.01
	add_offset = 130.0

 Code:
 NWC/CDOP2/GEO/MFL/SCI/UM/Cloud

 Issue:
 1.0
 Date:
 15 October 2016

 File:
 NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0

 Page:
 36/56

Container	Content		
GEO-CTTH _EFFECTIV	SAFNWC GEO CTTH Cloud Effective Cloudiness		
	GEO-CTTH_EFFECTIV = scale_factor * Counts + add_offset		
	ere:		
	$scale_factor = 0.01$		
	$add_offset = 0.0$		
GEO-CTTH	14 bits indicating (if set to 1)		
METHOD	Bit 0: Cloud-free		
_	Bit 1: No relieable method		
	Bit 2: Opaque cloud, RTTOV not available		
	Bit 3: Opaque cloud, using RTTOV		
	Bit 4: Opaque cloud, using RTTOV, in case thermal inversion		
	Bit 5: Intercept method 10.8μm/13.4μm		
	Bit 6: Intercept method 10.8μm/6.2μm		
	Bit 7: Intercept method 10.8μm/7.0μm		
	Bit 8: Intercept method 10.8μm/7.3μm		
	Bit 9: Radiance ratioing method 10.8µm/13.4µm		
	Bit 10: Radiance ratioing method 10.8μm/6.2μm		
	Bit 11: Radiance ratioing method 10.8µ7.0µm		
	Bit 12: Radiance ratioing method 10.8µm/7.3µm		
	Bit 13: Spatial smoothing (gap filling in semi-transparent cloud field)		
GEO-CTTH	Chita in Highering (if set to 1)		
	6 bits indicating (if set to 1) Bit 0: Cloud-free		
_status_flag	Bit 0: Cloud-free Bit 1: Low level thermal inversion in NWP field		
	Bit 1: Low level thermal inversion in NWP field Bit 2: Opaque clouds		
	Bit 2: Opaque clouds Bit 3: Fractional clouds : no retrieval method		
	Bit 4: Too thin clouds: no retrieval method		
	Bit 5: Multilayer suspected		
	Dit 5. Manually of Suspected		

 Code:
 NWC/CDOP2/GEO/MFL/SCI/UM/Cloud

 Issue:
 1.0
 Date:
 15 October 2016

 File:
 NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0

 Page:
 37/56

Geophysical Conditions

Field	Type	Description	
Space	Flag	Set to 1 for space pixels	
Illumination	Parameter	Defines the illumination condition	
		0: N/A (space pixel) 1: Night 2: Day 3: Twilight	
Sunglint	Flag	Set to 1 if Sunglint	
Land_Sea	Parameter	0: N/A (space pixel)	
		1: Land	
		2: Sea	
		3: Coast	
Rough_terrain	Flag	Set to 1 if rough terrain	
High_terrain	Flag	Set to 1 if high terrain	

Processing Conditions

Field	Type	Description
Satellite_input_data	Parameter	Describes the Satellite input data status
		0: N/A (space pixel)
		1: All satellite data are available
		2: At least one useful satellite channel is missing
		3: At least one mandatory satellite channel is missing
NWP_input_data	Parameter	Describes the NWP input data status
		0: N/A (space pixel or NWP data not used)
		1: All NWP data are available
		2: At least one useful NWP field is missing
		3: At least one mandatory NWP field is missing
Product_input_data	Parameter	Describes the Product input data status
		0: N/A (space pixel or Auxiliary data not used)
		1: All input Product data are available
		2: At least one useful input Product is missing
		3: At least one mandatory input Product is missing
Auxiliary_input_data	Parameter	Describes the Auxiliary input data status (includes products used as
		input to PGE)
		0: N/A (space pixel or Auxiliary data not used)
		1: All Auxiliary data are available
		2: At least one useful Auxiliary field is missing
		3: At least one mandatory Auxiliary field is missing

Quality

Field	Type	Description
Nodata	Flag	Set to 1 if pixel is NODATA
Internal_consistency	Flag	Set to 1 if an internal consistency check has been performed. Internal consistency checks will be based in the comparison of the retrieved meteorological parameter with physical limits, climatological limits, neighbouring data, NWP data, etc.
Temporal_consistency	Flag	Set to 1 if a temporal consistency check has been performed Temporal consistency checks will be based in the comparison of the retrieved meteorological parameters with data obtained in previous slots.

Code:NWC/CDOP2/GEO/MFL/SCI/UM/CloudIssue:1.0Date:15 October 2016File:NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0Page:38/56

Quality	Parameter	Retrieval Quality
		0: N/A (no data)
		1: Good
		2: Questionable
		3: Bad
		4: Interpolated

4.2 IMPLEMENTATION OF CLOUD TOP TEMPERATURE AND HEIGHT (GEO-CTTH)

CTTH is extracted by PGE03 (GEO-CTTH) component of the NWC/GEO software package. Detailed information on how to run this software package is available in the software user manual ([RD.2.]).

When a new region is defined the user has to manually prepare the CTTH model configuration files for this new region using a default CTTH model configuration file provided in the NWC/GEO software package (see its content in section 4.3.2).

The CTTH execution step is the real-time processing of the satellite images over the region. This process consists in the launch of the command: GEO-CTTH by the Task manager.

4.2.1 Manual preparation of Cloud Top Temperature and Height (CTTH) model configuration file for each region

When a new region is defined and added in system and run configuration files, the user must manually prepares the GEO-CTTH model configuration files by adapting the GEO-CTTH default model configuration file available in the SAFNWC/GEO software package (see its content in section 4.3.2).

The following parameter is configurable in the default GEO-CTTH model configuration file:

• CTTH_SZSEG (default value: 4): the size of the segment. [Segments are square boxes in the satellite projection, whose size is expressed as the number of default horizontal resolution pixels (3km at nadir for MSG) of one edge of the square box. The size of the processed regions must be a multiple of the segment size. The NWP model forecast values and RTTOV simulations will be derived over all the processed regions at the horizontal resolution of the segment. A small ctth_szseg will decrease the box aspect in the retrieved cloud top pressure and will be especially useful if the NWP fields have a high horizontal resolution. But it may become very time consuming as RTTOV is launched every segment.]. Note that sampling rate of NWP_PARAM and RTS_PARAM (see 2.3.2) should be modified accordingly.

4.2.2 The Cloud Top Temperature and Height (GEO-CTTH) execution step

The GEO-CTTH execution step consists in the launch of the command: GEO-CTTH by the Task manager with the required parameters: time of slot, region and configuration file name.

 Code:
 NWC/CDOP2/GEO/MFL/SCI/UM/Cloud

 Issue:
 1.0
 Date:
 15 October 2016

 File:
 NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0

 Page:
 39/56

4.3 INPUTS AND CONFIGURABLE PARAMETERS FOR CLOUD TOP TEMPERATURE AND HEIGHT (GEO-CTTH)

4.3.1 List of inputs for Cloud Top Temperature and Height (GEO-CTTH)

The input data to the CTTH algorithm are described in this section. Mandatory inputs are flagged, whereas the impact of missing non-mandatory data on the processing are indicated.

• Satellite imagery:

The following satellite brightness temperatures and radiances are needed at default horizontal resolution (3km at nadir for MSG):

Rad6.2µm	Rad7.3µm	Rad13.4µm	Rad10.8µm	T10.8µm	T12.0µm
At least one of these channels is mandatory,			Mandatory	Mandatory	Optional
the two others are then optional					

The CTTH software checks the availability of satellite brightness temperatures and radiances for each pixel. Full CTTH product is computed only if all mandatory satellite radiances and brightness temperatures are available. If T10.8µm brightness temperature is missing, no result is available. If T10.8µm brightness temperature is available, but mandatory channels are missing, only the cloud top temperature is computed using the method based on climatological atmospheric absorption correction.

The satellite channels are input by the user in requested format (HRIT for MSG), and extracted on the processed region by NWC/GEO software package.

• CMA and CT cloud categories

The CMA and CT cloud categories are mandatory. They are computed by the CMA and CT software.

Satellite angles associated to satellite imagery

This information is mandatory. It is computed by the CTTH software itself, using the definition of the region and the satellite characteristics.

• **NWP** parameters:

The forecast fields of the following parameters, remapped onto satellite images, are used as input:

- o surface temperature
- o surface pressure
- o air temperature and relative humidity (alternatively dew point temperature) at 2m
- o air temperature, relative humidity and geopotential on vertical pressure levels
- o tropopause temperature, pressure and geopotential
- o altitude of the NWP model grid (alternatively surface geopotential on the NWP model grid). Required if NWP fields are used as input.

Vertical pressure levels on which air temperature and humidity are defined by the user. All the surface and near-surface NWP informations and at least NWP informations every 210hPa on the vertical are mandatory to get full CTTH product. Otherwise only the cloud top temperature is retrieved using the method based on climatological atmospheric absorption correction. Furthermore,

 Code:
 NWC/CDOP2/GEO/MFL/SCI/UM/Cloud

 Issue:
 1.0
 Date:
 15 October 2016

 File:
 NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0

 Page:
 40/56

it is recommended to provide NWP information on levels at least up to 100hPa to ensure a good height retrieval quality for very high clouds.

These remapped fields are elaborated by the NWC software package from the NWP fields input by the user in GRIB format.

• RTTOV simulations:

The following parameters simulated by RTTOV are used as input for 10.8μm and 12.0μm window channels and all sounding channels (for MSG: 6.2 μm, 7.3 μm and 13.4 μm)

- Clear sky top of atmosphere radiance
- Transmittance from surface to TOA
- Clear sky downwelling radiance
- Clear+cloudy TOA radiance for given cloud top pressure and fraction (run RTTOV with black cloud at surface level)
- Level to space overcast radiance given black cloud for each vertical level defined by the user

These remapped fields are elaborated by the NWC/GEO software package by applying RTTOV to the NWP fields input by the user in GRIB format.

The RTTOV simulations are mandatory to get full CTTH product. Otherwise only the cloud top temperature is retrieved using the method based on climatological atmospheric absorption correction.

• OSTIA fields:

The following parameters are used as input:

OSTIA SST

High resolution global daily bulk SST fields (OSTIA) are input by the user who can obtain them from MyOcean service desk (see http://www.myocean.eu.org). They are used in conjunction with RTTOV simulations.

These OSTIA fields are not mandatory: if not available the RTTOV simulations will be performed using NWP skin surface temperature.

• Ancillary data sets:

The following ancillary data, remapped onto satellite images, are mandatory:

- Land/sea atlas
- o Elevation atlas
- Monthly minimum SST climatology
- o Monthly mean 0.6μm atmospheric-corrected reflectance climatology (land)
- o Monthly thermal emissivity at IR wavelength

These ancillary data are available in the NWC software package on a global scale; a SAFNWC tool allows their remapping on full disk for each new satellite; they are finally extracted on the processed region by the CTTH software itself.

One coefficients's file, containing satellite-dependent values and one look-up table for climatological atmospheric absorption correction, is available in the NWC software package, and is needed by the CTTH software.

 Code:
 NWC/CDOP2/GEO/MFL/SCI/UM/Cloud

 Issue:
 1.0
 Date:
 15 October 2016

 File:
 NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0
 41/56

4.3.2 CTTH Model Configuration File

The CTTH model configuration file contains all the coefficients and constants required for the derivation of the GEO-CTTH product. The model configuration file must be placed in the \$SAFNWC/config directory. The file contains the following information:

 Code:
 NWC/CDOP2/GEO/MFL/SCI/UM/Cloud

 Issue:
 1.0
 Date:
 15 October 2016

 File:
 NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0
 42/56

Keyword	Description	Type	Default Value(s)
PGE_ID	Identifier of the PGE	Chain of	GEO-CTTH
		characters	
SEV_BANDS	SEVIRI channels to be used by CTTH	Chain of	WV62,WV73,IR108,IR120,
	52. He chamers to be used by C1111	characters	IR134
INT_PRODUCT	Enables/disables the generation of	Chain of	NO
_	intermediate products	characters	
CTTH_SZSEG	Size of CTTH segments expressed in		4
	SEVIRI coordinates (same value for lines	Integer	
	and columns)		
RTTOV_USE_COMPUTED_		Chain of	FALSE
BIAS	Flag defining if biases are to be monitored on line when RTTOV-based tests are used		111101
		characters	
IS_ALREADY_RECALIBR	(not configurable in current version)	Claria C	FALSE
ATED	Flag defining whether satellite data input by	Chain of	FALCE
	the user are already recalibrated using post-	characters	
	launch and GSICS calibration coefficients		
NWP PARAM	(not configurable in current version)	Cl: °	NWP ST
NWP_PARAM	Parameter :Temperature at surface level	Chain of	4
	sampling rate : (=segment size CTTH_SZSEG)	characters	BLM
MILID DADAM	interpolation method.	GI I	NWP_ST
NWP_PARAM	Parameter :Temperature at surface level	Chain of	1 NWP_S1
	sampling rate : (=segment size CTTH_SZSEG)	characters	BLI
	interpolation method.		ANNO GO
NWP_PARAM	Parameter :Pressure at surface level	Chain of	NWP_SP 4
	sampling rate : (=segment size CTTH_SZSEG)	characters	BLI
	interpolation method.		
NWP_PARAM	Parameter :temperature at 2m	Chain of	NWP_2T
	sampling rate : (=segment size CTTH_SZSEG)	characters	BLI
	interpolation method.		
NWP_PARAM	Parameter :relative humidity at 2m	Chain of	NWP_2RH 4
	sampling rate : (=segment size CTTH_SZSEG)	characters	BLI
	interpolation method.		
NWP_PARAM	Parameter :Temperature at pressure levels	Chain of	NWP_T
	sampling rate : (=segment size CTTH_SZSEG)	characters	BLI
	interpolation method.		
NWP_PARAM	Parameter :relative humidity at pressure	Chain of	NWP_RH 4
	levels	characters	BLI
	sampling rate : (=segment size CTTH_SZSEG)		
	interpolation method.		
NWP_PARAM	Parameter :geopotential at pressure levels	Chain of	NWP_GEOP 4
	sampling rate : (=segment size CTTH_SZSEG)	characters	BLI
	interpolation method.		
NWP_PARAM	Parameter :Temperature at tropopause level	Chain of	NWP_TT
	sampling rate : (=segment size CTTH_SZSEG)	characters	BLI
	interpolation method.		
NWP_PARAM	Parameter :Pressure at tropopause level	Chain of	NWP_TP
	sampling rate : (=segment size CTTH_SZSEG)	characters	BLI
	interpolation method.		
NWP_PARAM	Parameter :Height at tropopause level	Chain of	NWP_TH
	sampling rate: (=segment size CTTH_SZSEG)	characters	BLI
	interpolation method.		
NWP_PARAM	Parameter :Altitude of the model at surface	Chain of	NWP_ALTM
	sampling rate: (=segment size CTTH_SZSEG)	characters	4 BLI
	interpolation method.		200
	· •		i.

 Code:
 NWC/CDOP2/GEO/MFL/SCI/UM/Cloud

 Issue:
 1.0
 Date:
 15 October 2016

 File:
 NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0
 43/56

Keyword	Description	Type	Default Value(s)
NWP_PARAM	Parameter : Geopotential at surface	Chain of	NWP_SGEOP 4
	sampling rate : (=segment size CTTH_SZSEG)	characters	BLI
	interpolation method		
RTS_PARAM	Parameter : Clear sky TOA radiance	Chain of	RTS_CLEAR 4
	sampling rate : (=segment size CTTH_SZSEG)	characters	BLI
	interpolation method		
RTS_PARAM	Parameter: Transmittance from surface to	Chain of	RTS_TAUTOTAL
	TOA	characters	BLI
	sampling rate : (=segment size CTTH_SZSEG)		
	interpolation method		
RTS_PARAM	Parameter : Clear sky down-welling	Chain of	RTS_DNCLEAR
	radiance	characters	BLI
	sampling rate : (=segment size CTTH_SZSEG)		
	interpolation method		
RTS_PARAM	Parameter: TOA radiance for given cloud	Chain of	RTS_TOTAL
	top pressure and fraction	characters	BLI
	sampling rate : (=segment size CTTH_SZSEG)		
	interpolation method		
RTS_PARAM	Parameter : Level to space overcast	Chain of	RTS_OVERCAST
	radiance given black cloud for each layer	characters	BLI
	sampling rate : (=segment size CTTH_SZSEG)		
	interpolation method		

Table 9: CTTH default Model Configuration File description

4.3.3 Configurable parameters for Cloud Top Temperature and Height (GEO-CTTH)

The following parameter is configurable in the default CTTH model configuration file:

• CTTH_SZSEG: the size of the segment is configurable (see its definition in 4.3.1). Its default value is 4. Information on how to change the size of the segment can be found in section 4.2.1.

4.4 CLOUD TOP TEMPERATURE AND HEIGHT (GEO-CTTH) VALIDATION

4.4.1 Summary of Cloud Top Temperature and Height (GEO-CTTH) validation results

The following table summarises the validation results of the current version for CTTH. More details can be obtained from the validation report for cloud products ([RD.1.]).

GEO-CTTH products	Validated accuracy: bias(std)
Top height of opaque low, mid-level and high cloud :	
If validated over full disk using satellite based lidar	-0.49km(0.99km)
If validated over full disk using satellite based radar	-0.35km(0.82km)
Top height of semi-transparent cloud:	
If validated over full disk using satellite based lidar	-1.44km(1.97km)
If validated over full disk using satellite based radar	0.21km(1.88km)

 Code:
 NWC/CDOP2/GEO/MFL/SCI/UM/Cloud

 Issue:
 1.0
 Date:
 15 October 2016

 File:
 NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0
 44/56

 Page:
 44/56

Table 10: Summary of validation results of the current CTTH version (std stands for standard deviation)

4.4.2 Typical known problems and recommendation for use

The following main problems may be encountered:

- CTTH will be wrong if the cloud is wrongly classified:
 - Underestimation of cloud top height/pressure for semi-transparent clouds classified as low/medium
 - Over estimation of cloud top height/pressure for low/medium clouds classified as semi-transparent
- No CTTH is available for clouds classified as fractional.
- CTTH may be not computed for thin cirrus clouds.
- Retrieved low cloud top height may be overestimated.

4.5 Example of Cloud Top Temperature and Height (CTTH) VISUALISATION

It is important to note that the CTTH product is not just images, but numerical data. At first hand, the CTTH is rather thought to be used digitally (together with the appended quality flags) as input to mesoscale analysis models, objective Nowcasting schemes, but also in the extraction of other NWC SAF products.

Colour palettes are included in CTTH NetCdF files, thus allowing an easy visualisation of cloud top pressure (as illustrated with the SEVIRI example on Figure 4), height, temperature and effective cloudiness.

The product, if used as an image on the forecaster desk, may be visualized (together with CT) in an interactive visualisation system, where individual pixel values (top temperature, height and pressure, cloudiness) may be displayed while moving the mouse over the image.

 Code:
 NWC/CDOP2/GEO/MFL/SCI/UM/Cloud

 Issue:
 1.0
 Date:
 15 October 2016

 File:
 NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0
 45/56

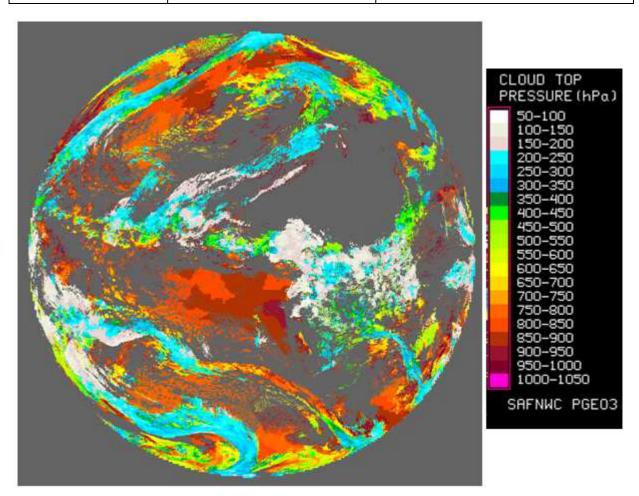


Figure 4: Example of SEVIRI CTTH cloud top pressure

 Code:
 NWC/CDOP2/GEO/MFL/SCI/UM/Cloud

 Issue:
 1.0
 Date:
 15 October 2016

 File:
 NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0

 Page:
 46/56

5 CLOUD MICROPHYSICS (GEO-CMIC) PRODUCT

5.1 DESCRIPTION OF CLOUD MICROPHYSICS (GEO-CMIC) PRODUCT

5.1.1 Goal of Cloud Microphysics product

The cloud mycrophysics (CMIC), developed within the NWC SAF context, mainly aims to support nowcasting applications. The main objective of this product is to provide detailed information on the cloud microphysics. It may be used as input to an objective meso-scale analysis (which in turn may feed a simple nowcasting scheme), as an intermediate product input to other products (such as precipitation), or as a final image product for display at a forecaster's desk. The CMIC product is useful for the identification of precipitation clouds and useful for characterisation of rapidly developing thunderstorm.

The CMIC product contains information relevant to the cloud top (thermodynamical phase, cloud particle size) or integrated on the full vertical extent (optical depth, liquid and ice water path).

5.1.2 Outline of Cloud Microphysics (GEO-CMIC) algorithm

The CMIC retrieval algorithm first retrieves the thermodynamical phase through an empirical use of T8.7μm-T10.8μm, T10.8μm and the CT cloud type itself complemented (only during daytime) by an combined analysis of the measured and simulated 0.6μm and 1.6μm reflectances. The additional microphysics parameters are obtained only in daytime conditions through the comparison of measured and simulated 0.6μm and 1.6μm reflectances.

The algorithm has been designed to be applicable to imagers on board meteorological geostationary satellites. The imagers may have different set of channels possibly at different horizontal resolutions. The lowest native resolution of the radiometer (3km at nadir for MSG/SEVIRI), which is for most imagers on board present and future meteorological geostationary satellites the horizontal resolution of all IR channels and some solar channels, will be chosen as the default horizontal resolution. Solar channels may be available at higher horizontal resolution (1km at nadir for HRV). In this release, the process is applied to all useful channels at the default horizontal resolution (high resolution channels being averaged at this resolution). We use generic labels in this document (for example, T8.7µm, T10.8µm, R0.6µm, and R1.6µm), the exact central wavelengths of the corresponding channels depending on the satellite. The list of available labels depends on the satellite; the list of mandatory channels is listed in 5.3.1.

The cloud top phase is first retrieved by an empirical use of T8.7μm-T10.8μm, T10.8μm and the CT cloud type itself complemented by an combined analysis of 0.6μm and 1.6μm measured and simulated reflectances, as summarized below:

- Warm (respectively cold) opaque clouds are supposed to be constituted of water (respectively ice) particles, whereas the temperature range between 0°C and -40°C may correspond to both (or a mixture) of water or ice clouds.
- Cloud classified as semi-transparent in CT cloud type are supposed be constituted of ice
 particles. Cloud classified as fractional may correspond to thin cirrus or sub-pixel low
 clouds; their retrieved cloud phase is therefore set "undefined".

 Code:
 NWC/CDOP2/GEO/MFL/SCI/UM/Cloud

 Issue:
 1.0
 Date:
 15 October 2016

 File:
 NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0

 Page:
 47/56

- Water clouds usually have low T8.7µm-T10.8µm and ice clouds rather high values. Simple viewing angle-dependant thresholds subjectively defined from SEVIRI observations are applied to identify obviously water or ice clouds.
- If the cloud top phase is still not determined, the comparison of observed and simulated 0.6µm and 1.6µm reflectances for cloudy pixels may allow retrieving the cloud top phase (but ambiguous situations may still exists).

Once the cloud phase has been determined, the optical depth and the particle size are obtained using the measured and the simulated $0.6\mu m$ and $1.6\mu m$ reflectances. Finally liquid and ice water path are obtained by empirical formula.

Details are available in the algorithm theoretical basis document for cloud products ([AD.11.])

5.1.3 Description of Cloud Microphysics (GEO-CMIC) output

The content of the CMIC output (in NetCdF format) is described in the Data Output Format document ([AD.8.]), a summary is given below:

Container		Content		
GEO-CMIC	SAFNWC GEO CMIC Cloud Top Phase			
_PHASE				
	Class	Cloud Top Phase category		
	1	Liquid		
	2	Ice		
	3	Mixed		
	4	Cloud-free		
	5	Undefined (separability problem)		
	FillValue	No data or corrupted data		
GEO-CMIC _REFF	SAFNWC GEO CMIC Cloud D	prop Effective Radius		
	GEO-CMIC_REFF(m) where: $scale_factor = 10^{-8}$ $add_offset = 0.0$	= scale_factor * Counts + add_offset		
GEO-CMIC _COT	SAFNWC GEO CMIC Cloud C GEO-CMIC_COT = so where: scale_factor = 0.01 add_offset = 0.0	ptical Thickness cale_factor * Counts + add_offset		
GEO-CMIC _LWP	SAFNWC GEO CMIC Cloud L GEO-CMIC_LWP(kg. where: scale_factor = 0.001 add_offset = 0.0	iquid Water Path m ⁻²) = scale_factor * Counts + add_offset		

 Code:
 NWC/CDOP2/GEO/MFL/SCI/UM/Cloud

 Issue:
 1.0
 Date:
 15 October 2016

 File:
 NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0
 48/56

Container		Content	
GEO-CMIC	SAFNWC GEO CMIC Cloud Ice Water Path		
_IWP			
	GEC	-CMIC_IWP(kg.m ⁻²) = scale_factor * Counts + add_offset	
	where:		
	scale_factor	= 0.001	
	add_offset		
GEO-CMIC	11 bits indica	ting (if set to 1)	
_status_flag			
	Bit 0:	Cloud-free	
	Bit 1:	High resolution satellite data used	
	Bit 2:	Combined use of 1.6µm & 2.2µm for phase retrieval	
	Bit 3:	No retrieved phase: no reliable Reff/Cot retrieval	
	Bit 4:	Mixed phase: no reliable Reff/Cot retrieval	
	Bit 5:	Measurement incoherent with simulation: no reliable Reff/Cot retrieval	
	Bit 6:	Too much overlap in simulation : no reliable Reff/Cot retrieval	
	Bit 7:	1.6µm used for reff/cot retrieval	
	Bit 8:	2.2μm used for reff/cot retrieval	
	Bit 9:	3.8µm used for reff/cot retrieval	
	Bit 10:	Multilayer cloud suspected	

 Code:
 NWC/CDOP2/GEO/MFL/SCI/UM/Cloud

 Issue:
 1.0
 Date:
 15 October 2016

 File:
 NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0
 49/56

Geophysical Conditions

Field	Type	Description	
Space	Flag	Set to 1 for space pixels	
Illumination	Parameter	Defines the illumination condition	
		0: N/A (space pixel) 1: Night 2: Day 3: Twilight	
Sunglint	Flag	Set to 1 if Sunglint	
Land_Sea	Parameter	0: N/A (space pixel) 1: Land 2: Sea 3: Coast	
Rough_terrain	Flag	Set to 1 if rough terrain	
High_terrain	Flag	Set to 1 if high terrain	

Processing Conditions

Field	Type	Description
Satellite_input_data	Parameter	Describes the Satellite input data status
		0: N/A (space pixel)
		1: All satellite data are available
		2: At least one useful satellite channel is missing
		3: At least one mandatory satellite channel is missing
NWP_input_data	Parameter	Describes the NWP input data status
		0: N/A (space pixel or NWP data not used)
		1: All NWP data are available
		2: At least one useful NWP field is missing
		3: At least one mandatory NWP field is missing
Product_input_data	Parameter	Describes the Product input data status
		0: N/A (space pixel or Auxiliary data not used)
		1: All input Product data are available
		2: At least one useful input Product is missing
		3: At least one mandatory input Product is missing
Auxiliary_input_data	Parameter	Describes the Auxiliary input data status (includes products used as
		input to PGE)
		0: N/A (space pixel or Auxiliary data not used)
		1: All Auxiliary data are available
		2: At least one useful Auxiliary field is missing
		3: At least one mandatory Auxiliary field is missing

Quality

Field	Type	Description
Nodata	Flag	Set to 1 if pixel is NODATA
Internal_consistency	Flag	Set to 1 if an internal consistency check has been performed. Internal consistency checks will be based in the comparison of the retrieved meteorological parameter with physical limits, climatological limits, neighbouring data, NWP data, etc.
Temporal_consistency	Flag	Set to 1 if a temporal consistency check has been performed Temporal consistency checks will be based in the comparison of the retrieved meteorological parameters with data obtained in previous slots.

 Code:
 NWC/CDOP2/GEO/MFL/SCI/UM/Cloud

 Issue:
 1.0
 Date:
 15 October 2016

 File:
 NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0

 Page:
 50/56

Quality	Parameter	Retrieval Quality
		0: N/A (no data)
		1: Good
		2: Questionable
		3: Bad
		4: Interpolated

5.2 IMPLEMENTATION OF CLOUD MICROPHYSICS (GEO-CMIC)

CMIC is extracted by PGE15 (GEO-CMIC) component of the NWC/GEO software package. Detailed information on how to run this software package is available in the software user manual ([RD.2.]).

When a new region is defined the user has to manually prepare the CMIC model configuration files for this new region using a default CMIC model configuration file provided in the NWC/GEO software package (see its content in section 5.3.2).

The CMIC execution step is the real-time processing of the satellite images over the region. This process consists in the launch of the command: GEO-CMIC by the Task manager.

5.2.1 Manual preparation of Cloud Microphysics (GEO-CMIC) model configuration file for each region

When a new region is defined and added in system and run configuration files, the user must manually prepares the GEO-CMIC model configuration files by adapting the GEO-CMIC default model configuration file available in the SAFNWC/GEO software package (see its content in section 5.3.2).

The following parameters are configurable in the default GEO-CMIC model configuration file:

- CMIC_SZSEG (default value: 4): the size of the segment. This default value may be manually changed. [Segments are square boxes in the satellite projection, whose size is expressed as the number of default horizontal resolution pixels (3km at nadir for MSG) of one edge of the square box. The size of the processed regions must be a multiple of the segment size. All the solar and satellite angles, the NWP model forecast values, the cloud simulations, the atlas values will be derived over all the processed regions at the horizontal resolution of the segment. Note also that the land/sea atlas will be available at the full default horizontal resolution, allowing the identification of the surface type (land or sea) of all default horizontal resolution pixels, whatever the segment size. The quality is not very much dependent on the segment size (if lower than 16)]. Note that sampling rate of NWP_PARAM and RTS_PARAM (see 2.3.2) should be modified accordingly.
- IS_ALREADY_RECALIBRATED (default value: FALSE): this flag defines whether satellite data input by the user are already recalibrated with post-launch calibration coefficients (solar channels) and GSICS IR calibration coefficients. [For nearly all users, it should remain set to FALSE (defaut value). If set to TRUE (for example, CM-SAF may use this option), the CMIC does not perform its own recalibration of solar channels].

 Code:
 NWC/CDOP2/GEO/MFL/SCI/UM/Cloud

 Issue:
 1.0
 Date:
 15 October 2016

 File:
 NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0

 Page:
 51/56

5.2.2 The Cloud Microphysics (GEOCMIC) execution step

The GEO-CMIC execution step consists in the launch of the command: GEO-CMIC by the Task manager with the required parameters: time of slot, region and configuration file name.

5.3 INPUTS AND CONFIGURATION PARAMETERS FOR CLOUD MICROPHYSICS (GEO-CMIC)

5.3.1 List of inputs for Cloud Microphysics (GEO-CMIC)

The input data to the CMIC algorithm are described in this section. Mandatory inputs are flagged, whereas the impact of missing non-mandatory data on the processing are indicated.

• Satellite imagery:

The following bi-directional reflectances or brightness temperatures are needed at default horizontal resolution (3km at nadir for MSG):

R0.6µm	R1.6µm	Т8.7μm	T10.8μm
Mandatory	Mandatory	Mandatory	Mandatory

The CMIC software checks the availability of channels for each pixel; no results are available for pixels where at least one mandatory channel is missing.

The channels are input by the user in requested format (HRIT for MSG), and extracted on the processed region by NWC/GEO software package.

It is essential to use well calibrated 0.6μm and 1.6μm reflectances: calibration coefficients provided by KNMI are used by CMIC to recalibrate these channels during CMIC computation.

CT cloud categories

The CT cloud categories are mandatory. They are computed by the CT software.

• CTTH cloud categories

The CTTH cloud top pressure are optional. They are computed by the CTTH software. If they are not available, default values are used for water (800hPa) or ice clouds (300hPa)

• Sun and satellite angles associated to satellite imagery

This information is mandatory. It is computed by the CMIC software itself, using the definition of the region and the satellite characteristics.

• NWP parameters:

The forecast fields of the following parameters, remapped onto satellite images, are used as input:

- Total ozone content
- Integrated water vapour content above and below pressure levels defined by user

These remapped fields are elaborated by the NWC/GEO software package from the NWP fields input by the user in GRIB format.

Code: NWC/CDOP2/GEO/MFL/SCI/UM/Cloud Issue: 1.0 Date: 15 October 2016 File: NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0 Page: 52/56

The NWP fields are not mandatory. The CMIC software replaces missing NWP fields by climatological values extracted from ancillary dataset. The quality of CMIC is lower if NWP fields are missing.

• Ancillary data sets:

The following ancillary data, remapped onto satellite images, are mandatory:

- Land/sea atlas
- o Elevation atlas
- O Monthly 0.6μm and 1.6μm white-sky surface albedo climatology (land)
- o Monthly integrated atmospheric water vapor content climatology
- o Monthly ozone content climatology

These ancillary data are available in the NWC/GEO software package on a global scale; a SAFNWC tool allows their remapping on full disk for each new satellite; they are finally extracted on the processed region by the CMIC software itself.

One coefficients's file (also called threshold table), containing satellite-dependent values and lookup tables for thresholds, is available in the NWC/GEO software package, and is needed by the CMIC software.

One file (netcdf format) containing offline DISORT simulations of $0.6\mu m$ and $1.6\mu m$ cloud radiative properties (beam bi-directional reflection, beam direct transmission, beam diffuse transmission, diffuse transmission, diffuse reflection flux) performed for a set of water and ice clouds, is available in the NWC/GEO software package, and is needed by the CMIC software.

5.3.2 CMIC Model Configuration File

The CMIC model configuration file contains all the coefficients and constants required for the derivation of the GEO-CMIC product. The model configuration file must be placed in the \$SAFNWC/config directory. The file contains the following information:

 Code:
 NWC/CDOP2/GEO/MFL/SCI/UM/Cloud

 Issue:
 1.0
 Date:
 15 October 2016

 File:
 NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0
 Page:
 53/56

Keyword	Description	Type	Default Value(s)
PGE_ID	Identifier of the PGE	Chain of	GEO-CMIC
		characters	
SEV_BANDS	SEVIRI channels to be used by CMIC	Chain of	VIS06,NIR16,IR87,IR108
		characters	
INT_PRODUCT	Enables/disables the generation of	Chain of	NO
	intermediate products	characters	
	(not configurable in current version)		
CMIC_SZSEG	Size of CMIC segments expressed in	Integer	4
	SEVIRI coordinates (same value for lines		
	and columns)		
IS_ALREADY_RECALIBR ATED	Flag defining whether satellite data input by	Chain of	FALSE
ALED	the user are already recalibrated using post-	characters	
	launch and GSICS calibration coefficients		
NWP_PARAM	Parameter :Total ozone content	Chain of	NWP_TOZ 4
	sampling rate : (=segment size CMIC_SZSEG)	characters	BLI
	interpolation method.		
NWP_PARAM	Parameter :Integrated water vapour above	Chain of	NWP_AWV
	pressure level	characters	BLI
	sampling rate : (=segment size CMIC_SZSEG)		
	interpolation method.		
NWP_PARAM	Parameter :Integrated water vapour below	Chain of	NWP_BWV 4
	pressure level	characters	BLI
	sampling rate : (=segment size CMIC_SZSEG)		
	interpolation method.		

Table 11: CMIC default Model Configuration File description

5.3.3 Configurable parameters for Cloud Microphysics (GEO-CMIC)

The following configurable parameter are available in the default CMIC model configuration file:

- CMIC_SZSEG: The size of the segment is configurable (see its definition in section 5.3.1). Its default value is 8. Information on how to change the size of the segment can be found in section 5.2.1.
- IS_ALREADY_RECALIBRATED: this flag, defining whether satellite data input by the user are already recalibrated with post-launch calibration coefficients (solar channels) and GSICS IR calibration coefficients, is configurable (see its definition in section 5.3.1). Its default value is FALSE. Information on how to change this value can be found in section 5.3.1 and in the software user manual ([RD.2.]).

5.4 CLOUD MICROPHYSICS (GEO-CMIC) VALIDATION

5.4.1 Summary of Cloud Microphysics (GEO-CMIC) validation results

The following table summarises the validation results of the current version. More details can be obtained from the validation report for cloud products ([RD.1.]).

GEO-CMA flags	Validated accuracy
GEO-CMIC cloud phase	
If validated over full disk using space born	

Code:NWC/CDOP2/GEO/MFL/SCI/UM/CloudIssue:1.0Date:15 October 2016File:NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0Page:54/56

lidar observation	For water phase: POD: 93.78% FAR: 5.40%
	For ice phase: POD: 96.59% FAR: 3.94%
GEO-CMIC cloud liquid water path If validated over full disk over ocean using AMSR micro-wave imagery	Bias: -0.96g/m ² ; rsm: 38.46g/m ²

Table 12: Summary of validation results of the current CMIC cloud phase and cloud liquid water path (POD stands for Probability Of Detection)

5.4.2 Typical known problems and recommendation for use

The following problems may be encountered:

- No CMIC is available for cloud classified as fractional
- No optical thickness, drop effective radius and liquid/ice water path are retrieved at nightime or twilight, or at daytime for "mixed phase" or "undefined phase"

5.5 Example of Cloud Microphysics (CMIC) visualisation

It is important to note that the CMIC product is not just an image, but numerical data. At first hand, the CMIC is rather thought to be used digitally (together with the appended flags (quality) as input to mesoscale analysis models, objective Nowcasting schemes, but also in the extraction of other NWC SAF products (precipitation products for example).

Colour palettes are included in CMIC NetCdF files, thus allowing an easy visualisation of CMIC different parameters such as the cloud phase, cloud optical thickness (as illustrated in Figure 5), cloud effective radius (as illustrated in Figure 6), cloud liquid or ice water path.

 Code:
 NWC/CDOP2/GEO/MFL/SCI/UM/Cloud

 Issue:
 1.0
 Date:
 15 October 2016

 File:
 NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0
 Page:
 55/56

Figure 5 Example of SEVIRI cloud phase flag illustrated with the colour palette included in the CMIC NetCdF files.

 Code:
 NWC/CDOP2/GEO/MFL/SCI/UM/Cloud

 Issue:
 1.0
 Date:
 15 October 2016

 File:
 NWC-CDOP2-GEO-MFL-SCI-UM-Cloud_v1.0
 56/56

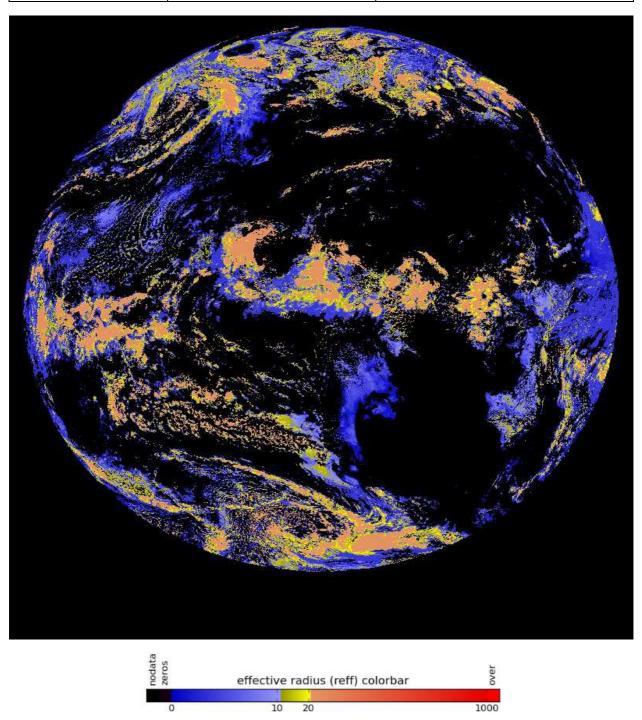


Figure 6 Example of SEVIRI cloud effective radius illustrated with the colour palette included in the CMIC NetCdF files.