

Outline

Status

- Statistics
- Satellite data
- Auxiliary data
- Libraries
- News

Plans

- Information model common for LEO and GEO
- Satellites and algorithms
- Processing on swath only
- More automated validation
- Installation and configuration
- Portability
- Input and feedback from users needed!

Goal: Raise your interest in the future development of PPS

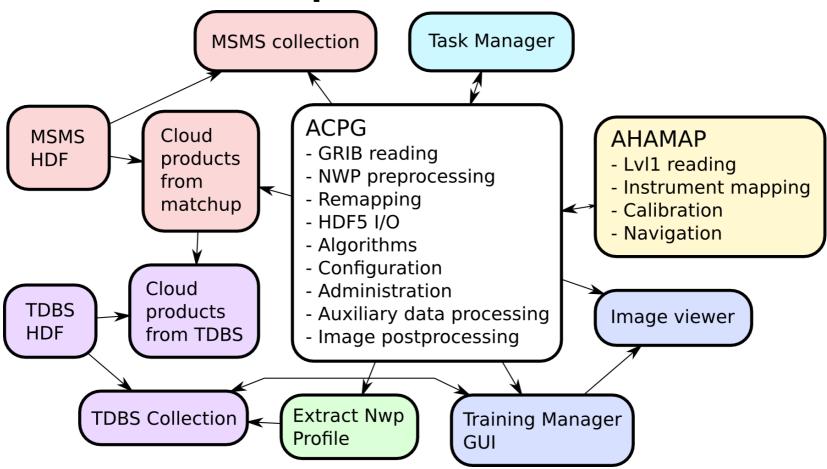
Status: Statistics

- Code
 - Beta release: C+Fortran: ~75 000 lines, Python: ~12 000 lines
 - C: 121 344 lines
 - Fortran: 18 773 lines
 - Python: 66 993 lines

- Users
 - 6 known to run PPS operationally, 6 more running / setting up
 - How many unknown?

Status: Satellite data

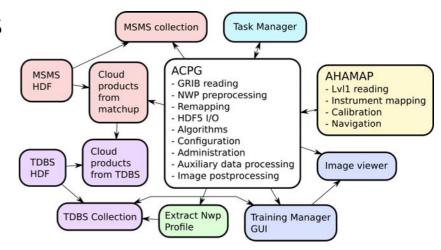
- NOAA (AVHRR, AMSU-A, AMSU-B/MHS)
- Metop (AVHRR, AMSU-A, MHS, IASI)
- Terra, Aqua (MODIS) for prototyping NPP
- Local
- Global Metop
- GAC (Global Area Coverage, NOAA)
 - State-of-the-art intercalibration (v2010)
 - NOAA7 NOAA19


Status: Auxiliary Data

- NWP
 - GRIB
 - ECMWF, HIRLAM, any NWP model in regular lon/lat grid (pressure levels)
- Variable land emissivity (v2010)
- Land use (USGS)
 - Fraction of land (coasts)
- Topography (USGS)
- Sea ice (OSISAF)

Status: Different parts of PPS

Status: Internal Libraries


- Common functions
 - HDF5 files
 - Read/write PPS information model
 - HDF5 1.8 (v2010)
 - Read auxilliary data
- GRIB files
 - Read any field
 - PPS uses: Temperature, Column integrated water vapour, OSISAF sea ice
 - NWP postprocessing: model levels to pressure levels, integrate water vapour, tropopause, ...
 - GRIB API (v2010) replaces EMOS => seamless use of GRIB edition 2 files
 - Need test data (TIGGE data works)
- Remapping / projection

Use externally? Some insight needed...

We want to make this easier!

LandSAF? Others?

News 2010

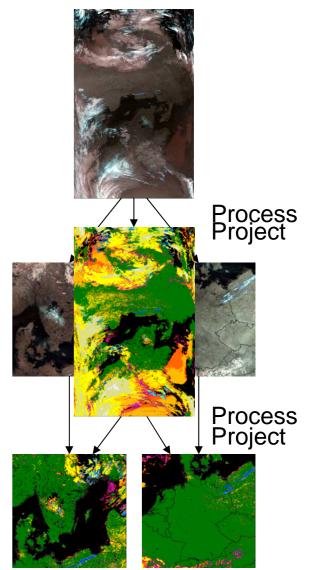
- Variable land emissivity
- Numeric replaced by NumPy, ScientificPython removed
- HDF5 1.8, HLHDF 0.79
- RTTOV9 (CTTH, dynamic feature thresholds)
- GAC processing better
- GRIB API (read both GRIB 1 and GRIB 2)
- CTTH threading configurable
- Bugs smashed
 - Wrong threshold table for t37t12 was used (SPR:376/SMR:354)
 - Memory leaks
 - •
- source_me, .profile_pps now automagically set up during configure

Plans

- Information model common for LEO and GEO
- Satellites and algorithms
- Processing on swath only
- More automated validation
- Installation and configuration
- Portability
- Input and feedback from users needed!

Plans: Satellites and algorithms

- Additional satellites
 - NPP/JPSS
 - FY-3
 - PCW
 - Post-EPS
- Additions to / improvements of algorithms
 - E.g. probabilistic cloud masking, improved aerosol detection
- We want to make
 - adding new instruments, and
 - testing/adding/replacing algorithms or parts of algorithms easy for users and developers alike



Plans: Process on swath only

- Currently two pathways
 - Region: 1) project satellite data, 2) process
 - Swath: 1) process, 2) project result
 - => Duplication of code, bugs
- Performance:
 - Region faster for < ~6 1024×1024 areas
 - Swath faster for more processing

How would this affect your processing?

Plans: More automated validation

- PPS currently includes some tools for validation
- Push-a-button validation
- Automatic, periodic, regular validation

Plans: Metadata standards, file formats

- Common information model and metadata standard for LEO and GEO
- Conform to community standards / conventions, such as
 - CF conventions
 - OPeNDAP
- File formats, e.g.
 - HDF5
 - netCDF 4
 - GeoTIFF
- Easier for users to use either LEO or GEO data
- Web services integration

Plans: Simplify Installation, Configuration

- Distribution
 - One complete distribution, including 3rd party dependencies
 - Possibly through script to download needed packages from Aemet servers
- Installation, one of the following candidates
 - Pure GNU build tools, more standardised
 - Umbrella package / installation script
 - Python Distutils
- Configuration
 - Uniform configuration files
 - Even more automated setup
 - Remove multiple definitions

Plans: Portability

- Currently testing only on Intel GNU/Linux
- Solaris user, portability reference

Plans: Technical solutions

- Modularise
- Clean, well defined, persistent interfaces
 - Easier to add functionality without affecting rest of system
 - Users can use whole system or parts
 - I/O, create own products, test/add/replace algorithms
 - We want to know what you need
 - Easier to locate bugs
 - Easier to use/replace 3rd party modules, e.g. for projection
- Python as far as possible, C for number crunching
 - Object oriented, cost effective development, easier to build

or

- C core (similar to current system)
 - Users can interface from C programs

Which parts would you like to see in C / Python?

Summary

- More flexible system for users and developers
 - Easily add satellites/instruments, algorithms
 - Use parts of the PPS software package
 - Modularisation is key, good interfaces

Questions to users

- Which parts of PPS do you currently use/interface?
- Which parts would you like to be able to interface? How would that interface ideally look for you?
- What additions/changes to PPS would you like to see in the future?
- Do you need support/validation for platforms other than Intel GNU/Linux?
- Do you use the Task Manager? Would you like to? On Global Metop?
- Write down ideas at our poster
- Come talk with us!

