

#### PPS-MW STATUS AND FUTURE PLANS

B. RYDBERG, N. HÅKANSSON, S. HÖRNQUIST, I. KAUR, AND A. DYBBROE SWEDISH METEOROLOGICAL AND HYDROLOGICAL INSTITUTE

NWC SAF USER WORKSHOP, 25 - 27 FEBRUARY, 2025, MADRID



#### What is the NWC SAF PPS-MW package?

- Upcoming processing package for
  - near real time cloud water and precipitation products,
  - microwave sounding/imaging sensors related to EUMETSATs Metop-SG,
  - to be released after the launch of Metop-SG B satellite



#### **PPS-MW** products

| Product | Main quantity      | Platform/sensor                | Coverage                                  | Spatial resolution   | Accuracy requirement<br>(simplified) | Scientific<br>responsibility |
|---------|--------------------|--------------------------------|-------------------------------------------|----------------------|--------------------------------------|------------------------------|
| IWP     | Ice water path     | Metop-SG-B/ICI                 | Global                                    | ~16 km               | ${\sim}50$ % for IWP > 20 g/m²       | NWCSAF                       |
| LWP     | Liquid water path  | Metop-SG-B/MWI                 | Global<br>(ice free ocean)                | ~30 km               | ~50 % for LWP > 20 g/m²              | NWPSAF*                      |
| PR-I    | Precipitation rate | Metop-SG-B/MWI                 | Global                                    | ~10 km               | 200 % RSE for rates > 1 mm / h $$    | HSAF                         |
| PR-S    | Precipitation rate | Metop-SG-A/MWS                 | Global                                    | ~17 km<br>(at nadir) | 200 $\%$ RSE for rates > 1 mm / h    | HSAF                         |
| PR-HL   | Precipitation rate | Metop-SG-A/MWS*<br>(AWS, ATMS) | High Latitude<br>(Area around Baltic Sea) | ~8 — 16 km           | 200 $\%$ RSE for rates > 1 mm / h    | NWCSAF/HSAF                  |



## Why use PPS-MW products?

- Metop-SG sensors provide novel observations
  - pairing microwave and sub-mm measurements
  - penetrates cloud systems but is effected by hydro-meteors
- PPS-MW products developed and evaluated by SAFs
  - long term responsibility and support
- Precipitation products
  - provides a complement to other observation systems
  - extend coverage / fill in of gaps of ground based radar networks
- Cloud mass products
  - Can be used directly for nowcasting or to evaluate corresponding quantities of an NWP model
  - => model improvement



#### **Timeliness**

- Product generation time < few minutes</li>
- But Metops & JPSS satellites provide irregular coverage throughout the day
  - average time to coverage: ~90 minutes
- Coverage would greatly improve with an EPS-Sterna constellation
  - EPS-Sterna would be a constellation of Arctic Weather Satellite like units in combination with Metop and JPSS satellites
  - average time to coverage: ~25 minutes
  - PPS-MW will naturally support EPS-Sterna



Sampling frequency of a point in central Sweden.



# **Precipitation products**

- PPS-MW include several precipitation products
  - two global ones
  - and a specific one for high-latitudes (difficult area)



#### **Estimated performance / precipitation**

- PPS-MW package will include two products developed by HSAF:
  - P-IN-MWS and P-IN-MWI (corresponding to PR-S and PR-I in PPS-MW)
- Algorithms based on a neural network approach trained with observations, i.e. co-located passive microwave and space borne radar data:
  - ATMS / Suomi-NPP (P-IN-MWS)

.

- GMI / GPM Core Observatory (P-IN-MWI)
- Cloud Profiling Radar (CPR) / CloudSat
- Dual-frequency Precipitation Radar (DPR) / GPM Core Observatory
- The P-IN-MWS and P-IN-MWI algorithm includes 6 and 11 individual neural networks, respectively, that are run in a sequential order
  - See e.g. Sano et al., 2022, A Machine Learning Snowfall Retrieval Algorithm for ATMS, for an overview description of algorithm type



Estimated performance of the P-IN-MWS product, in terms of relative error compared to GPM-DPR 2B-CMB product. Figure from HSAF P-IN-MWS ATBD.



#### **PR-HL example**



Precipitation retrieval based on ATMS data and compared to BALTRAD composite (ground based radars). PR-HL data can for example extend the coverage and fill in possible gaps of the radar composite.



## **Cloud mass products**

PPS-MW include cloud mass products and auxiliary data from MWI and ICI

**MWI** and **ICI** will both be hosted on Metop-SG-B satellite and **will** pair microwave and sub-mm observations and thereby **provide novel data**, and reduce uncertainties in global cloud mass estimates



Zonal means of ice water path derived from observations and reanalysis data-sets. Courtesy of Duncan, D. I. and Eriksson, P.: An update on global atmospheric ice estimates from satellite observations and reanalyses, Atmos. Chem. Phys., 18, 11205–11219, 2018.



# Estimated performance

IWP, mean height, and mean particle size



Figure from May et al, 2024, The Ice Cloud Imager: retrieval of frozen water column properties



### **Status and plans**

- Implementation
  - algorithms for all planned product implemented
- Validation plan
  - all products to be validated with actual data and best possible reference data
- Release plan
  - Preliminary in 2027 (beta release: autumn 2026)
- Future plans
  - To be decided/defined in CDOP5 proposal, but it is clear that a realization of EPS-Sterna would be game changer

