

User Manual for the Wind product processor of the NWC/PPS: Science Part
 Code:
 NWC/CDOP3/PPS/AEMET/SCI/UM/Wind

 Issue:
 0.1
 Date:
 12 October 2021

 File:
 NWC-CDOP3-PPS-AEMET-SCI-UM-Wind_v0.1
 Page:
 1/67

EUMETSAT NOVESALF SUPPORT TO NOWCASTING AND

VERY SHORT RANGE FORECASTING

User Manual for the Wind product processor of the NWC/PPS: Science Part

NWC/CDOP3/PPS/AEMET/SCI/UM/Wind, Issue 0, Rev.1 12 October 2021

Applicable to NWC/PPS-HRW v7.P Applicable to SAFNWC/PPS version 2021

Applicable to the following PGEs:

Acronym	Product ID	Product name	Version number
HRW	(demonstrational)	High Resolution Winds	7.P (demonstrational release)

REPORT SIGNATURE TABLE

Function	Name	Signature	Date
Prepared by	Javier García Pereda, AEMET		30 September 2020
Reviewed by	NWC/PPS Project Team NWC/PPS v2021 Review Board NWC SAF Project Managers		12 October 2021
Endorsed by	NWC SAF Steering Group		
Authorised by	Pilar Rípodas & Llorenç Lliso, AEMET (NWC SAF Project Managers)		

DOCUMENT CHANGE RECORD

Version	Date	Pages	Changes
0.1d	30 September 2020	67	Initial version for NWC/PPS-HRW v7.P Content derived from Document "User Manuel for the Wind product processor of the NWC/GEO: Science Part", NWC/CDOP3/GEO/AEMET/SCI/UM/Wind, v1.1
0.1e	1 September 2021	67	Updates due to results of PPS v2021 RR: Change the status of HRW to 'demonstrational'.
0.1	12 October 2021	67	Updates after PPS v2021 DRR: Just updated the document references.

List of contents

1.	INTRODUCTION	7
1.1	SCOPE OF THE DOCUMENT	7
1.2	SOFTWARE VERSION IDENTIFICATION	8
1.3	IMPROVEMENTS FROM PREVIOUS VERSIONS	8
1.4	DEFINITIONS, ACRONYMS AND ABBREVIATIONS	9
9		1.4.1
13	Acronyms and Abbreviations	1.4.2
1.5	REFERENCES	14
14	Applicable Documents	1.5.1
13	Kejerence Documents	1.3.2
2.	DESCRIPTION OF HIGH RESOLUTION WINDS (NWC/PPS-HRW)	16
2.1	GOAL OF HIGH RESOLUTION WINDS (NWC/PPS-HRW)	16
2.2	OUTLINE OF HIGH RESOLUTION WINDS (NWC/PPS-HRW) ALGORITHM	17
18	Preprocessing	2.2.1
19		2.2.2
20		2.2.3
21		2.2.4
23	Bostprocessing, Quality control and Choice of the best wind	2.2.3
25	Postprocessing: Quality control and Choice of the best wind Postprocessing: Orographic flag	2.2.0
27	Postprocessing: Autovalidation of NWC/PPS-HRW algorithm	2.2.7
2.3	DESCRIPTION OF HIGH RESOLUTION WINDS (NWC/PPS-HRW) OUTPUTS	
29		2.3.1.
33	HRW output as BUFR bulletins with NWC SAF specific format (Trajectories)	2.3.2.
35		2.3.3.
36		2.3.4.
40		2.3.5.
43	Output data filterings	2.3.6.
3.	IMPLEMENTATION OF HIGH RESOLUTION WINDS (NWC/PPS-HRW)	44
3.1	INSTALLATION AND PREPARATION OF NWC/PPS SOFTWARE PACKAGE	44
3.2	RUNNING OF HIGH RESOLUTION WINDS (NWC/PPS-HRW)	44
3.3	DOCUMENTATION OF HIGH RESOLUTION WINDS (NWC/PPS-HRW)	49
3.4	LIST OF ERRORS FOR HIGH RESOLUTION WINDS (NWC/PPS-HRW)	50
4.	INPUTS AND CONFIGURABLE PARAMETERS	53
4.1	LIST OF INPUTS FOR HIGH RESOLUTION WINDS (NWC/PPS-HRW)	
4.2	LIST OF CONFIGURABLE PARAMETERS FOR HIGH RESOLUTION WINDS (NWC/PPS-I	HRW)55
5.	VALIDATION OF HIGH RESOLUTION WINDS (NWC/PPS-HRW)	59
5.1	VALIDATION OF NWC/PPS-HRW FOR POLAR SATELLITES	60
6.	ASSUMPTIONS AND LIMITATIONS IN NWC/PPS-HRW	64
7.	VISUALISATION EXAMPLES OF NWC/PPS-HRW	66

List of Tables

Table 1: List of Definitions 12
Table 2: List of Acronyms and Abbreviations 13
Table 3: List of Applicable Documents
Table 4: List of Reference Documents 15
Table 5: AMV filtering related to the 'AMV cloud type' and the satellite channel, and consideration of the 'Cloud top pressure' or 'Cloud base pressure' in the "Brightness temperature interpolation height assignment method" for the valid cases
Table 6: Variables used for the AMV output with the NWC SAF specific BUFR format
Table 7: Description of "local specific variables" in the "NWC SAF specific BUFR format"32
Table 8: Variables used for the Trajectory output with the "NWC SAF specific BUFR format"34
Table 9: Variables used for the AMV output with the "2018 IWWG BUFR format"
Table 10: High Level specification of the NWC/PPS-HRW netCDF output40
Table 11: Detailed specification of the NWC/PPS-HRW netCDF output
Table 12: List of errors for NWC/PPS-HRW v7.P software
Table 13: NWC/PPS-HRW v7.P Model Configuration File Description 58
Table 14: Validation parameters for NWC/PPS-HRW v7.P AMVs, considering all layers together, against Radiosounding winds in light green and against ECMWF NWP analysis winds in dark green. (Basic AMVs in nominal configuration; Feb 2020-Apr 2020 between 11:00 and 13:00 UTC; Polar satellites with AVHRR/3, VIIRS and MODIS radiometers). Statistics for region "EURON1 - Scandinavia" on the left side; region "EUROPA" on the right side61
Table 15: Validation parameters for NWC/GEO-HRW v6.1 AMVs (latest NWC/GEO-HRW version), considering all layers together, against Radiosounding winds in light blue and against ECMWF NWP analysis winds in dark blue. (Basic AMVs in nominal configuration; Jul 2009-Jun 2010 at 12:00 UTC; MSG-2 satellite; "European and Mediterranean" region).61
Table 16: Validation parameters for NWC/PPS-HRW v7.P AMVs, considering respectively the high, medium and low layer, against Radiosounding winds in light green and against ECMWF NWP analysis winds in dark green. (Basic AMVs in nominal configuration; Feb 2020-Apr 2020 between 11:00 and 13:00 UTC; Polar satellites with AVHRR/3, VIIRS and MODIS radiometers). Statistics for region "EURON1 - Scandinavia" on the left side; region "EUROPA" on the right side
Table 17: Validation parameters for NWC/GEO-HRW v6.1 AMVs (latest NWC/GEO-HRW version), considering respectively the high, medium and low layer, against Radiosounding winds in light blue and against ECMWF NWP analysis winds in dark blue. (Basic AMVs in nominal configuration; Jul 2009-Jun 2010 at 12:00 UTC; MSG-2 satellite; "European and Mediterranean" region)

List of Figures

Figure 3: NWC/PPS-HRW implementation: Part 3, Tracer computation, writing of output files..48

- Figure 7: NWC/PPS-High Resolution Winds "Detailed AMV" output example in the region "EUROPA" (3 March 2020 12:40:44 UTC for SNPP satellite, with tracers calculated at 12:20:09 UTC for EOS-2 satellite), considering conditions defined in \$SM CONFIG DIR/safnwc HRW POLAR.cfm model file configuration and

1. INTRODUCTION

The "EUMETSAT Satellite Application Facilities (SAFs)" are dedicated centres of excellence for the processing of satellite data, and form an integral part of the distributed "EUMETSAT Application Ground Segment". This documentation is provided by the SAF on support to Nowcasting and Very short range forecasting (NWC SAF). The main objective of the NWC SAF is to provide, develop and maintain software packages to be used with operational meteorological satellite data for Nowcasting applications. More information about the project can be found at the NWC SAF webpage, http://www.nwcsaf.org.

This document is applicable to the NWC/PPS software package for polar satellites.

1.1 SCOPE OF THE DOCUMENT

This document is the "User Manual (UM) for the Wind Product Processor of the NWC/PPS" software package (NWC/PPS-HRW, High Resolution Winds), which calculates Atmospheric Motion Vectors and Trajectories considering images reprojected to a static region, coming from any of the following polar satellites, radiometers and channels:

- AVHRR/3 radiometer inside NOAA-15, NOAA-16, NOAA-17, NOAA-18, NOAA-19, Metop-A, Metop-B or Metop-C polar satellites, using 0.630 μm VIS06 visible channel and/or 10.800 μm IR108 infrared channel.
- VIIRS radiometer inside SNPP or NOAA-20 polar satellites, using 0.672 μm VIS06 visible channel and/or 10.763 μm IR108 infrared channel.
- MODIS radiometer inside EOS-1 (Terra) or EOS-2 (Aqua) polar satellites, using 0.645 μm VIS06 visible channel and/or 11.030 μm IR110 infrared channel.

There is a commitment so that the adaptation of NWC/PPS-HRW software to these polar satellite series is validated. The corresponding validation results are shown in the corresponding "Scientific and Validation Report" [AD.12], and as a summary also in this document.

This "User Manual" describes the goal and implementation of NWC/PPS-HRW algorithm, and a basic description of its algorithm. It also provides information on the input data and the resulting output data.

1.2 SOFTWARE VERSION IDENTIFICATION

This document describes the software implemented in the NWC/PPS-HRW v7.P (demonstrational release) of the NWC/PPS v2021 software package release.

1.3 IMPROVEMENTS FROM PREVIOUS VERSIONS

This is the first implementation of NWC/PPS-HRW software, for use with 12 polar satellites including AVHRR/3, VIIRS and MODIS radiometers.

The whole AMV calculation algorithm, and most of the HRW code, derive directly from NWC/GEO-HRW v6.1 software, included in NWC/GEO v2018.1 software package, which is defined for the AMV calculation with MSG, GOES-N, GOES-R and Himawari-8/9 geostationary satellite series. (91% of HRW code is common to both NWC/GEO and NWC/PPS implementations; only 5% of the code is specific to NWC/GEO, and 4% of it is specific to NWC/PPS).

This way, with the application to polar satellites defined here through NWC/PPS-HRW v7.P, the option appears for the first time to calculate AMVs throughout all the world, including polar areas, with the same algorithm (using both implementations HRW v6.1 and v7.P) This is rather uncommon in general, and can be used for example for NWP assimilation of AMVs all throughout the world calculated with the same AMV algorithm, or for climatic studies of the wind throughout all the world.

1.4 DEFINITIONS, ACRONYMS AND ABBREVIATIONS

1.4.1 Definitions

4x4 big pixel matrix	4x4 big element matrix, in which pixels of a tracer candidate are classified at reduced resolution, defining three different brightness classes (CLASS_n)
Atmospheric Motion Vector (AMV)	Horizontal wind calculated through the horizontal displacement between two Earth positions in two different satellite images (defined as initial image and later image), of a square segment of n x n pixels called tracer
Basic dataset	Set of tracers or AMVs, calculated with the basic or wide tracer scale (with a default value of 24 x 24 pixels). Two kinds of Basic tracers are possible: wide basic tracers (with bright big pixels in the first and last big pixel row or column) and narrow basic tracers (occurring otherwise)
Bearing angle	Angle defined by the great circle connecting two locations on the Earth
Best fit pressure level	Pressure level which minimizes the vector difference between the AMV and a NWP reference wind, considering as reference wind the nearest NWP wind profile or nearest Radiosounding wind profile, with a linear variation of the wind components between profile levels
Big pixel	Each element of the 4x4 big pixel matrix, in which pixels of a tracer candidate are classified at reduced resolution, defining three different brightness classes (CLASS_0, CLASS_1, CLASS_2)
Bright big pixel	Big pixel inside a big pixel matrix, in which at least a 70% of its pixels is brighter than a given frontier (also called CLASS_2 big pixel)
Brightness value	Value for a given pixel of the N_Value matrices, characterized by the Normalized reflectance in the pixel for Visible channels and the Brightness temperature in the pixel in Infrared or Water vapour channel, and defined as an integer value ranging from 0 to 255
Clear air AMV	AMV defined through the horizontal displacement between two Earth positions in two different satellite images, of a tracer defined through a specific humidity feature in water vapour images
Closeness threshold	Minimum distance in lines and columns allowed between two tracer locations
Cloud type	Cloud type defined for each tracer or AMV with NWC/PPS-CT output data, used for example to define which of the two calculated height levels (cloud top, cloud base) is used in the "Brightness temperature interpolation height assignment process"
Cloudy AMV	AMV defined through the horizontal displacement between two Earth positions in two different satellite images, of a tracer defined through a specific cloudiness feature in visible, infrared or water vapour images
Common Quality Index	Quality parameter, calculated with a self-contained Fortran module defined by EUMETSAT and NOAA/NESDIS, to be included as such without modifications by all AMV algorithms, and useful for a common homogeneous use of AMVs calculated with different AMV algorithms.
Consistency	Difference between an AMV and some other expected wind, quantified in probabilistic terms for the Quality Index calculation

Coverage hole	Location in the initial image in which two consecutive failures in the definition of a tracer with Gradient method have occurred, so defining a location for the tracer search with the second method, Tracer characteristics method	
Dark big pixel	Big pixel inside a big pixel matrix, in which less than a 30% of its pixels is brighter than a given frontier (also called CLASS_0 big pixel)	
Detailed dataset	Set of tracers or AMVs, calculated with the detailed or narrow tracer scale (with a default value of 12×12 pixels). Three kinds of Detailed tracers are possible: unrelated to a basic tracer, related to a wide basic tracer, related to a narrow basic tracer	
Distance factor	Formula used to define which AMVs contribute to the spatial and temporal consistency tests for a given AMV, and their corresponding contribution to the consistency test	
Frontier	A significant minimum in the N_Value matrix histogram for a given tracer candidate	
Great circle	Trajectory between two locations on the Earth surface, which relates them considering the smallest possible distance	
Haversine formula	Formula used to compute the great circle distance between two locations on the Earth surface	
IND_TOPO parameter	Value of the AMV Orographic flag parameter, calculated to detect land influence for a given Atmospheric Motion Vector	
Initial image	Satellite image in which tracers are defined with any of the two tracer calculation methods (Gradient or Tracer characteristics), so defining the initial position in the AMV displacements	
LAT_C, LON_C	Geographical coordinates of the tracking centre in the later image, considering a given AMV	
LAT_T, LON_T	Geographical coordinates of the tracer centre in the initial image, considering a given AMV	
Later image	Satellite image in which tracers defined previously are tracked with any of the two tracking methods (Euclidean distance or Cross correlation), defining the later positions in the AMV displacements	
Main tracking centre	Tracking centre for a given tracer, which has the best possible Euclidean distance/Cross correlation values	
Maximum brightness gradient	Location of the maximum brightness value gradient inside a tracer candidate, to be defined as a tracer location with Gradient method	
Maximum optimisation distance	Maximum distance in lines or columns allowed between a coverage hole used in the search of tracers with Tracer characteristics method, and the corresponding tracer location	
Mixed calculation method	Alternative method available for the calculation of AMVs and Trajectories with NWC/PPS-HRW software, through which the tracer tracking is evaluated considering shorter time intervals, and the displacement is evaluated considering longer time intervals.	
Neighbour AMV	AMV which is close enough to a given one in the current processing cycle, used in the Quality spatial correlation test	

N_Value matrix	Normalized reflectances for Visible channels, or Brightness temperatures for Infrared or Water vapour channels, for a given image in the processing region, defined as integer values ranging from 0 to 255.
Orographic flag (dynamic)	Flag to show possible land influence in the previous positions of a given AMV. It is calculated after the static orographic flag procedure, and indicated through IND_TOPO values: 1,2,3,4,5,6.
Orographic flag (static)	Flag to show possible land influence in the position of a given AMV. Indicated through IND_TOPO values: 1,2,3,6.
Overall Quality Index	Final Quality Index, weighted sum of individual forecast, temporal and spatial consistency tests (not considering the interscale consistency test)
Parallax correction	Correction of the apparent horizontal displacement of a feature in a satellite image, due to its height over the Earth surface
Persistent tracer	Tracer related to AMVs calculated in the previous cycle, for which the tracer centre is the tracking centre of the AMV in the previous cycle
Pixel distance	Preliminary line and column separation in pixels between the tracer locations, before the readjustments made by the tracer selection methods
Pixel exclusion matrix	Ensemble of pixels inside the processing region in which additional tracers cannot be located
Predecessor AMV	AMV in the previous processing cycle, whose tracking centre is used as the tracer centre of a persistent tracer in the current processing cycle
Prior AMV	AMV in the previous processing cycle close enough to a given AMV in the current processing cycle, used in the Quality temporal correlation test
Quality index (QI)	Quality parameter used to define the quality of the generated AMVs and Trajectories. It is based on spatial, temporal and forecast consistency against reference AMVs or the NWP wind forecast. Two kinds of Quality indices are defined: with and without forecast (with and without the contribution of the consistency against the NWP wind forecast)
Quality index threshold	Minimum value of the Quality index (with/without forecast) so that the given AMV/Trajectory can be written in the output files
S (in CC computation)	Any pixel inside a tracking candidate
Secondary tracking centre	Tracking centre for a given tracer, which does not have the best Euclidean distance or Cross correlation
Segment of the image	A set of contiguous pixels in a satellite image, defined by its size and location
Single scale procedure	Tracer selection procedure, for which only one scale of tracers is calculated
Starting location	Each a priori location of tracers throughout the initial image, in principle uniformly covering the whole processing region
Subpixel tracking	Tracking processing, through which the tracking centres in the later image are located in a non-integer location of the tracking area, and which is calculated through second order interpolation of the Euclidean distance minima/Cross correlation maxima locations
T (in CC computation)	Any pixel inside a tracer

TESO parameter	Orographic test parameter, detailing if the orographic flag could be calculated for a given AMV, and the relative results in AMVs related to the same tracer, to be added to the Quality TEST indicator
TEST parameter	Quality flag after the Quality control processing, detailing which quality consistency tests were applied for a given AMV, and the relative results of each quality consistency test for all AMVs related to the same tracer
Tracer	Square segment in the initial image with a fixed size (nxn pixels, called tracer size), identified by the location of its centre, and considered valid candidate for AMV calculation by any of the tracer calculation methods
Tracer candidate	Square segment in the initial image with a fixed size, where conditions for tracer search using "Tracer characteristics method" are evaluated
Tracer continuity	Processing option in which part of the set of tracers in the current processing cycle is defined through the tracking centres of AMVs in the previous processing cycle
Tracer location	Pixel coordinates of a tracer centre (line and column) in the initial image
Tracer selection procedure	Strategy to get a complete set of tracers throughout the desired region of the image. It consists of 2 iterations (2 methods) for the single scale procedure; 4 iterations (2 methods, 2 scales) for the two scale procedure
Tracer size	Line/column dimension of a tracer. In NWC/PPS-HRW software, both dimensions are similar defining square shaped tracers
Tracking	Determination of the best matching square segment for a given tracer in the initial image, with the same line and column dimension, inside the tracking area of a later image
Tracking area	Square segment in the later image containing the search area of a given tracer, in which all possible tracking candidates are located
Tracking candidate	Each square segment inside a tracking area of the later image, that is evaluated for the tracking of a given tracer
Tracking centre	Best matching square segment for a given tracer, with the same line and column dimension, inside the tracking area of a later image
Tracking centre location	For a tracking centre, pixel coordinates of its centre (line and column) in the later image
Trajectory	Path defining the displacement of a specific tracer throughout several satellite images
Two scale procedure	Tracer selection process considering tracers with two different tracer sizes (Basic dataset and Detailed dataset, being the line and column dimension of the second dataset half the dimension of the first dataset)
Weighted location	Location different that the centre of the tracer in the initial image or the tracking centre in the later image, relating best the displacement of the AMVs and Trajectories to the displacement of the part of the tracer with a largest contribution to the cross correlation.
Wind guess	NWP wind longitudinal and latitudinal components, through which the location of a smaller tracking area in the later image is defined for a quicker processing, although with a dependency on the NWP wind

1.4.2 Acronyms and Abbreviations

AMV	Atmospheric Motion Vector
AVHRR/3	NOAA's Advanced Very High Resolution Radiometer - 3rd Generation
BUFR	Binary Universal Form for the Representation of meteorological data
CDOP2	NWC SAF Second Continuous Development and Operations Phase
CDOP3	NWC SAF Third Continuous Development and Operations Phase
CIMSS	NOAA/UW's Cooperative Institute for Meteorological Satellite Studies
ECMWF	European Centre for Medium Range Weather Forecasts
EOS-1/2	NASA's Earth Observation System Satellites (Terra and Aqua), including MODIS radiometer
EUMETSAT	European Organization for the Exploitation of Meteorological Satellites
IR108 & IR110	AVHRR/3 and VIIRS 10.8µm Infrared channel – MODIS 11.0µm Infrared channel
IWWG	International Winds Working Group
Metop-A/B/C	EUMETSAT's Polar Meteorological Operational Satellites, including AVHRR/3 radiometer
MODIS	NASA's Moderate resolution Imaging Spectroradiometer
NASA	United States' National Aeronautics and Space Administration
NOAA	United States' National Oceanic and Atmospheric Administration
NOAA-15/16/17/18/19	NOAA's Polar Operational Environmental Satellites - 5th Generation, including AVHRR/3 radiometer
NOAA-20 & SNPP	NASA and NOAA's Joint Polar Satellite System satellites, including VIIRS radiometer
NWC/GEO	NWC SAF Software Package for Geostationary satellites
NWC/GEO-HRW	NWC/GEO Software Element for the High Resolution Winds
NWC/PPS	NWC SAF Software Package for Polar satellites
NWC/PPS-HRW	NWC/PPS Software Element for the High Resolution Winds
NWC SAF	EUMETSAT's Satellite Application Facility on support to Nowcasting and Very short range forecasting
SCI	NWC SAF Scientific Report
SMR	NWC SAF Software Modification Report
SPR	NWC SAF Software Problem Report
UW	United States' University of Wisconsin/Madison
VIIRS	NASA's Visible/Infrared Imager Radiometer Suite radiometer
VIS06	AVHRR/3, VIIRS and MODIS 0.6µm Visible channel
WMO	World Meteorological Organization
	I able 2: List of Acronyms and Abbreviations

1.5 REFERENCES

1.5.1 Applicable Documents

The following documents, of the exact issue shown, form part of this document to the extent specified herein. Applicable documents are those referenced in the Contract or approved by the Approval Authority. They are referenced in this document in the form [AD.X]

For versioned references, subsequent amendments to, or revisions of, any of these publications do not apply. For unversioned references, the current edition of the document referred applies.

Current documentation can be found at the NWC SAF Helpdesk web: http://www.nwcsaf.org.

Ref.	Title	Code	Version
[AD.1]	Proposal for the Third Continuous Development and Operations Phase (CDOP3)	NWC/CDOP3/SAF/AEMET/MGT/PRO	1.0
[AD.2]	Project Plan for the NWC SAF CDOP3 Phase	NWC/CDOP3/SAF/AEMET/MGT/PP	1.5
[AD.3]	Configuration Management Plan for the NWC SAF	NWC/CDOP3/SAF/AEMET/MGT/CMP	1.1
[AD.4]	NWC SAF Product Requirements Document	NWC/CDOP3/SAF/AEMET/MGT/PRD	1.4
[AD.5]	Interface Control Document for Internal and External Interfaces of the NWC/PPS	NWC/CDOP3/PPS/SMHI/SW/ICD/1	3.0
[AD.6]	User Manual for the NWC/PPS application: Software Part, 2.Operation	NWC/CDOP3/PPS/SMHI/SW/UM/OPER	3.0
[AD.7]	System and Component Requirements Document for the NWC/PPS	NWC/CDOP3/PPS/SMHI/SW/SCRD	2.3
[AD.8]	Algorithm Theoretical Basis Document for the Wind product processor of the NWC/GEO	NWC/CDOP2/GEO/AEMET/SCI/ATBD/Wind	2.2
[AD.9]	Algorithm Theoretical Basis Document for the Wind product processor of the NWC/PPS	NWC/CDOP3/PPS/AEMET/SCI/ATBD/Wind	0.1
[AD.10]	User Manual for the Wind product processor of the NWC/GEO: Software part	NWC/CDOP3/GEO/AEMET/SCI/UM/Wind	1.1
[AD.11]	Scientific and Validation Report for the Wind product processor of the NWC/GEO	NWC/CDOP3/GEO/AEMET/SCI/VR/Wind	1.1
[AD.12]	Scientific and Validation Report for the Wind product processor of the NWC/PPS	NWC/CDOP3/PPS/AEMET/SCI/VR/Wind	0.1

Table 3: List of Applicable Documents

1.5.2 Reference Documents

The reference documents contain useful information related to the subject of the project. These reference documents complement the applicable ones, and can be looked up to enhance the information included in this document if it is desired. They are referenced in this document in the form [RD.X]. For dated references, subsequent amendments to, or revisions of any of these publications do not apply. For undated references, the current edition of the document referred applies.

Ref	Title
IDD 11	Hue HUEL LINE HILL HUEL HILL HER D. Character D. Marcell, V. Ciertana, A. Kash, L. von da Dana, 1002, Oranational Claud
[KD.1]	Motion Winds from Meteosat Infrared Images (Journal of Applied Meteorology, Num. 32, pp. 1206-1225).
[RD.2]	S.Nieman, J.Schmetz, W.P.Menzel, 1993: A comparison of several techniques to assign heights to cloud tracers (Journal of Applied Meteorology, Num. 32, pp. 1559-1568).
[RD.3]	C.M.Hayden & R.J.Purser, 1995: Recursive filter objective analysis of meteorological fields, and application to NESDIS operational processing (Journal of Applied Meteorology, Num. 34, pp. 3-15).
[RD.4]	K.Holmlund, 1998: The utilisation of statistical properties of satellite derived Atmospheric Motion Vectors to derive Quality Indicators (Weather and Forecasting Num 13 pp. 1093-1104)
[RD.5]	J.M.Fernández, 1998: A future product on HRVIS Winds from the Meteosat Second Generation for nowcasting and other applications. (Proceedings 4 th International Wind Workshop, EUMETSAT Pub.24).
[RD.6]	J.M.Fernández, 2000: Developments for a High Resolution Wind product from the HRVIS channel of the Meteosat Second Generation (Proceedings 5 th International Wind Workshop, FUMETSAT Pub 28)
[RD.7]	J.M.Fernández, 2003: Enhancement of algorithms for satellite derived winds: the High Resolution and Quality Control aspects (Proceedings 2003 Meteorological Satellite Conference, EUMETSAT Pub 39)
[RD.8]	J.García-Pereda & J.M.Fernández, 2006: Description and validation results of High Resolution Winds product from HRVIS MSG channel at the EUMETSAT Nowcasting SAF (Proceedings 8th International Wind Workshop, EUMETSAT Pub 47)
[RD.9]	J.García-Pereda, 2008: Evolution of High Resolution Winds Product (HRW), at the Satellite Application Facility on support to Nowcasting and Very short range forecasting (Proceedings 9 th International Wind Workshon, EUMETSAT Pub 51)
[RD.10]	J.García-Pereda, 2010: New developments in the High Resolution Winds product (HRW), at the Satellite Application Facility on support to Nowcasting and Very short range forecasting (Proceedings 10 th International Wind Workshop, EUMETSAT Pub.56).
[RD.11]	C.M.Hayden & R.T.Merrill, 1988: Recent NESDIS research in wind estimation from geostationary satellite images (ECMWF Seminar Proceedings: Data assimilation and use of satellite data, Vol. II, pp.273-293).
[RD.12]	W.P.Menzel, 1996: Report on the Working Group on verification statistics. (Proceedings 3 rd International Wind Workshop, EUMETSAT Pub.18).
[RD.13]	J.Schmetz, K.Holmlund, A.Ottenbacher, 1996: Low level winds from high resolution visible imagery. (Proceedings 3 rd international winds workshop, EUMETSAT Pub.18).
[RD.14]	Xu J. & Zhang Q., 1996: Calculation of Cloud motion wind with GMS-5 images in China. (Proceedings 3 rd international winds workshop, EUMETSAT Pub.18).
[RD.15]	K.Holmlund & C.S.Velden, 1998: Objective determination of the reliability of satellite derived Atmospheric Motion Vectors (Proceedings 4 th International Wind Workshop, EUMETSAT Pub.24).
[RD.16]	K.Holmlund, C.S.Velden & M.Rohn, 2000: Improved quality estimates of Atmospheric Motion Vectors utilising the EUMETSAT Quality Indicators and the UW/CIMSS Autoeditor (Proceedings 5 th International Wind Workshop, EUMETSAT Pub.28).
[RD.17]	R.Borde & R.Oyama, 2008: A direct link between feature tracking and height assignment of operational Atmospheric Motion Vectors (Proceedings 9 th International Wind Workshop, EUMETSAT Pub.51).
[RD.18]	J.García-Pereda, R.Borde & R.Randriamampianina, 2012: Latest developments in "NWC SAF High Resolution Winds" product (Proceedings 11 th International Wind Workshop, EUMETSAT Pub.60).
[RD.19]	WMO Common Code Table C-1 (WMO Publication, available at https://www.wmo.int/pages/prog/www/WMOCodes/WMO306_vI2/LatestVERSION/WMO306_vI2_CommonTable_en.pdf)
[RD.20]	WMO Code Tables and Flag Tables associated with BUFR/CREX table B, version 31 (WMO Publication, available at www.wmo.int/pages/prog/www/WMOCodes/WMO306_v12/PrevVERSIONS/20181107/WMO306_v12_BUFRCREX_CodeFlag_en.pdf)
[RD.21]	P.Lean, G.Kelly & S.Migliorini, 2014: Characterizing AMV height assignment errors in a simulation study (Proceedings 12 th International Wind Workshop, EUMETSAT Pub.63).
[RD.22]	Á.Hernández-Carrascal & N.Bormann, 2014: Cloud top, Cloud centre, Cloud layer – Where to place AMVs? (Proceedings 12 th International Wind Workshop, EUMETSAT Pub.63).
[RD.23]	K.Salonen & N.Bormann, 2014: Investigations of alternative interpretations of AMVs (Proceedings 12 th International Wind Workshop, EUMETSAT Pub.63).
[RD.24]	D.Santek, J.García-Pereda, C.Velden, I.Genkova, S.Wanzong, D.Stettner & M.Mindock, 2014: 2014 AMV Intercomparison Study Report - Comparison of NWC SAF/HRW AMVs with AMVs from other producers (available at http://www.nwcsaf.org/aemetRest/downloadAttachment/225)
[RD.25]	D.Santek, R.Dworak, S.Wanzong, K.Winiecki, S.Nebuda, J.García-Pereda, R.Borde & M.Carranza, 2018: 2018 AMV Intercomparison Study Report (available at http://www.nwcsaf.org/aemetRest/downloadAttachment/5092)
[RD.26]	D.J.Seidel, B.Sun, M.Pettey & A.Reale, 2011: Global radiosonde balloon drift statistics (Journal of Geophysical Research, Num 116)

Table 4: List of Reference Documents

2. DESCRIPTION OF HIGH RESOLUTION WINDS (NWC/PPS-HRW)

2.1 GOAL OF HIGH RESOLUTION WINDS (NWC/PPS-HRW)

The NWC/PPS-High Resolution Winds (NWC/PPS-HRW) software aims to provide, for near real time meteorological applications, detailed sets of "<u>Atmospheric Motion Vectors</u>" (AMVs) and "<u>Trajectories</u>" from images reprojected to a static region, coming from any of the following polar satellites, radiometers and channels:

- AVHRR/3 radiometer inside NOAA-15, NOAA-16, NOAA-17, NOAA-18, NOAA-19, Metop-A, Metop-B or Metop-C polar satellites.
- VIIRS radiometer inside SNPP or NOAA-20 polar satellites.
- MODIS radiometer inside EOS-1 (Terra) or EOS-2 (Aqua) polar satellites.

An "Atmospheric Motion Vector" (AMV) is the horizontal displacement between two Earth positions in two satellite images ("<u>initial image</u>" and "<u>later image</u>"), of a square "<u>segment</u>" of nxn pixels. The square segment is defined through a specific cloudiness feature in visible or infrared images (and so called "<u>cloudy AMV</u>"). Water vapour images have not been considered for the calculation of AMVs in this first version of NWC/PPS-HRW software, in contrast to the currently operational version of NWC/GEO-HRW software (HRW v6.1), due to the lack of water vapour channels in both AVHRR/3 and VIIRS radiometers.

The NWC/PPS-HRW software output includes pressure level information, which locates in the vertical dimension the calculated AMVs and Trajectories, and a quality control flagging, which gives an indication of its error in probabilistic terms, with auxiliary indicators about how the AMVs and Trajectories were determined.

It has been developed by AEMET in the framework of the EUMETSAT Satellite Application Facility on support to Nowcasting and Very short range forecasting (NWC SAF). This software is useful in Nowcasting applications, used in synergy with other data available to the forecaster.

For example, in the watch and warning of dangerous wind situations, in the monitoring of the general flow, of low level convergence (when and where cumulus start to develop), of divergence at the top of developed systems, or other cases of small scale circulation or wind singularities.

It can also be used in form of objectively derived fields, and assimilated in Numerical Weather Prediction Models (together with many other data), as an input to Analysis, Nowcasting and Very short range forecasting applications. The quality flags should be very useful for these cases.

NWC/PPS-HRW output is equivalent to that of NWC/GEO-HRW (so that both can be used exactly the same way by the user), and similar to other products calculating Atmospheric Motion Vectors: winds, trajectories and related parameters are calculated with a level 2 of processing. No level 3 of processing (as a grid interpolation or a meteorological analysis based on NWC/PPS-HRW output) is included.

2.2 OUTLINE OF HIGH RESOLUTION WINDS (NWC/PPS-HRW) ALGORITHM

As a whole, NWC/PPS-HRW (High Resolution Winds) software is designed in a modular way, so that it can be easy to handle and modify. The whole process includes the following steps:

1. <u>Preprocessing:</u>

• Includes the reading and geolocation of the satellite image data reprojected to a static region which are going to be used for the AMV calculation (Brightness temperatures and Normalized reflectances from the mentioned satellites and reflectometers, with their latitudes, longitudes, satellite and solar angles), and the reading of the corresponding NWP data and NWC/PPS Cloud outputs (CT and CTTH,) for the same static region that are also going to be used in the NWC/PPS-HRW processing.

2. <u>Processing:</u>

• First, "tracers" are calculated in an "initial image" with two consecutive methods: Gradient and Tracer characteristics.

• Later, these "tracers" are "tracked" in a "later image" through one of two different methods (Euclidean distance or Cross correlation), with the selection of up to three "tracking centres" for each "tracer".

• "Atmospheric Motion Vectors (AMVs)" and "Trajectories" are then calculated, considering the displacement between the position of each "tracer" in the "initial image" and the position of the corresponding "tracking centres" in the "later image".

• The pressure level of the AMVs and Trajectories is defined through one of two different methods ("Brightness temperature interpolation method" or "Cross Correlation Contribution method") for their vertical location in the atmosphere.

3. Postprocessing:

• A Quality control with EUMETSAT "Quality Indicator" method is implemented, with the choice of the "Best AMV" considering the up to three AMVs calculated for each tracer, and a Final control check to eliminate wrong AMVs and Trajectories which are very different to those in their vicinity.

• An "Orographic flag" can also be calculated, which incorporating topographic data detects those AMVs and Trajectories affected by land influence.

The code was progressively developed with GOES, MFG and MSG satellite data. Examples with MSG, GOES-N, Himawari-8/9 and GOES-R satellite series are presented throughout the description of the algorithm to illustrate the process.

Many of the options and coefficients are configurable in the "NWC/GEO-HRW model configuration file", such as explained in detail in Chapter 4.2. For example, the satellite channels for which AMVs are to be extracted are defined by configurable parameter 'WIND CHANNEL'.

In NWC/GEO-HRW v6.1, the default configuration implies the use of consecutive images (separated by 10 minutes with Himawari-8/9 series, by 10 or 15 minutes with GOES-R satellites, by 15 minutes with MSG series, and by 15 or 30 minutes with GOES-N series) for the definition and tracking of the tracers, and so for the calculation of AMVs. An additional option for "Rapid scan mode" with MSG satellites is possible (with images separated by 5 minutes). No "Rapid scan mode" option has been defined for use with the other satellite series.

2.2.1 Preprocessing

During the initialization process, a list of parameters is extracted from the corresponding input files, after reprojection of all these input files to the selected static processing region. All reprojection process is previous to the running of NWC/PPS-HRW, and has to be run as explained in [AD.6].

- 1. VIS06 normalized reflectances and/or IR108 brightness temperatures from the corresponding "satellite image input files" for the two images in which tracers are identified and tracked, from any polar satellite with AVHRR/3. VIIRS, MODIS radiometers (NOAA-15/20, SNPP, MetOp-A/C, EOS-1/2). Latitude and longitude ("lat" and "lon") and the horizontal and vertical dimension of the static region used ("nx" and "ny") are also extracted from these files.
- 2. Solar and satellite zenith angles ("satzenith" and "sunzenith"), and the scanning time of each pixel ("time per pixel"), from the corresponding "satellite angle input files" for the two images in which tracers are identified and tracked
- 3. NWP temperature profiles "t" from the "NWP input files" for the static region used for the AMV calculation. NWP wind component profiles ("u" and "v") can also be extracted for the 'forecast consistency quality test', for the definition of the tracking area in the later image, or for the calculation of validation statistics for the AMVs with NWC/PPS-HRW algorithm itself. NWP geopotential profiles ("z") can also be extracted if the 'Orographic flag' is calculated. All of them are implemented in the default configuration.

For this, at least two "NWP forecast input files" related to a moment before and a moment after the images in which tracers are identified and tracked are needed for the processing; one "NWP analysis input file" up to one hour away from the moment in which AMVs are tracked is additionally needed to run Validation statistics against NWP analysis winds.

- 4. NWC/PPS-CT Cloud Type output ("ct") for the image in which tracers are identified, in case the 'AMV Cloud type' is calculated in the 'Brightness temperature interpolation height assignment method'. NWC/PPS-CT Cloud Type output ("ct") for the image in which tracers are tracked, in case 'CCC height assignment method' is used. The additional variable "grid_mapping_info" is extracted from these files to check the name and characteristics of the reprojection used for all NWC/PPS-HRW input files. These options are implemented in the default configuration.
- 5. NWC/PPS-CTTH Cloud Top Temperature and Pressure outputs ("ctth_tempe" and "ctth_press") for the image in which tracers are tracked, in case 'CCC height assignment method' is used. This option is implemented in the default configuration.
- 6. Elevation ("elevation") and horizontal and vertical dimension in metres for each pixel ("xdist" and "ydist") from the "Physiography file" related to the static region used for the AMV calculation.

Here, the "Physiography file", the "satellite image input files", the "satellite angle input files" and the "NWC/PPS-CT Cloud Type output" for the requested images, and the "NWP input files" with NWP temperature profiles are strictly needed for the calculation of AMVs and Trajectories. Other data contribute to a higher number of AMVs and Trajectories and a better quality of the output data.

2.2.2 Tracer calculation

Two <u>tracer</u> computation methods are applied: <u>Gradient; Tracer characteristics</u>. They are used one after the other in two different <u>tracer selection</u> strategies throughout the region: the '<u>single scale procedure'</u> (when one scale of tracers is calculated), and the '<u>two scale procedure'</u> (when two different scales of tracers are calculated: "basic" and "detailed", being the line and element size of the "detailed tracers" half the size the one for "basic tracers").

Both methods calculate a tracer optimising its location around one of the 'starting locations' in the image. In NWC/PPS-HRW v7,P default configuration, the distance between starting locations for tracers related to low and very low clouds is half the one for other cloud types to maximize the amount of AMVs related to these cloud types (configured with HIGHERDENSITY_LOWTRACERS, HIGHERDENSITY_LOWTRACERS_DET = 2).

A resolution ('<u>tracer size</u>') of 24 pixels is proposed as baseline for the '<u>single scale procedure</u>' (used as default option with configurable parameter CDET=0) for all types of tracers. The latitude and longitude limits for calculation of AMVs and Trajectories can be specified with configurable parameters LAT_MAX, LAT_MIN, LON_MAX, LON_MIN. A resolution of 24 pixels for the 'basic tracers' and 12 pixels for the 'detailed tracers' is proposed for the '<u>two scale procedure</u>' (when configurable parameters LAT_MAX_DET=1). A smaller region can be defined for the detailed scale with configurable parameters LAT_MAX_DET, LAT_MIN_DET, LON_MAX_DET, LON_MIN_DET.

With the default configuration, configured with CALCULATE_TRAJECTORIES = 1, the definition of new "<u>tracer locations</u>" starts at the integer line/column location of all "<u>tracking centres</u>" related to valid AMVs in the previous round, when they are available. So, a set of "<u>persistent tracers</u>" is defined and tracked in several images, and the progressive locations of the tracer throughout the time define "<u>Trajectories</u>". For this, it is necessary that the conditions implied by the "tracer method" used for the determination of the tracer in the "initial image", keep on being valid throughout all the images.

However, in contrast to NWC/GEO-HRW, where the satellite scanning region is constant for all slots so permitting the calculation of long trajectories with a persistence of even hours, in NWC/PPS-HRW it is very infrequent that an Earth location can be viewed by several consecutive polar satellite scans. Due to this, the possibility to calculate with NWC/PPS-HRW trajectories persisting for more than three satellite images is very infrequent. Due to this, in comparison, the applicability of trajectories from NWC/PPS-HRW is more limited, which has to be taken into account by the NWC SAF user.

2.2.3 Tracer tracking and Wind calculation

The '<u>tracking</u>' method seeks for the best '<u>adjustment centre</u>' of a tracer computed in a previous image, over a larger portion on the following image ('<u>tracking area</u>'), performing a pixel by pixel comparison inside a segment of the same size ('<u>tracking candidate</u>'), repeatedly moving this segment over the tracking area until the best candidates are found. For this, one of next algorithms is used:

- <u>Euclidean distance</u> (configured with TRACKING = LP), where the sum $LP_{ij} = \Sigma\Sigma(T-S)^2$ is calculated considering the visible normalized reflectances/infrared or water vapour brightness temperatures of all tracer (T) and tracking candidate (S) pixels at correlative locations. The best locations are defined through the minimum values of the sum LP_{ij} .
- <u>Cross correlation</u> (configured with TRACKING = CC, default value), that computes the correlation $CC_{ij}=Cov_{TS}/(\sigma_T.\sigma_S)$ where ' σ ' is the standard deviation or root of the variance and 'Cov' is the covariance between the tracer and tracking candidate. The best locations are defined through the maximum values of the correlation CC_{ij} .

To increase the speed of NWC/PPS-HRW algorithm, the 'tracking area centre' is located at the position of the tracer which is forecast for the later image by the NWP wind, as defined by configurable parameter WIND_GUESS = 1. This has been defined this way due to the long time separation which can exist between the 'initial image' and the 'later image' (up to 120 minutes), which can generate very large 'tracking areas'.

However, this implies a small dependence of NWC/PPS-HRW outputs on the NWP model used. The option is kept for the NWC SAF user to remove this "wind guess" with WIND_GUESS = 0. Operationally, this can be used in NWC/PPS-HRW software when the size of the reprojected pixels is large (around 5 km) and so the size of the "tracking area" is not too large in pixels.

The line/column size in pixels of the "<u>tracking area</u>" is calculated so that it is able to detect for any tracer speed differences with respect to the NWP wind guess of at least 72 km/h in any direction (value of configurable parameter MINSPEED_DETECTION), when the wind guess is used in the definition of the tracking area. When the wind guess is not used, this MINSPEED_DETECTION parameter is to be understood as the minimum displacement in any direction that NWC/PPS-HRW software is able to detect. Up to 3 '<u>tracking centres</u>' are retained for both tracking methods: the absolute and 2 local best positions. The line/column and latitude/longitude location of the '<u>tracking centres</u>' in the later image is refined as default option with second order interpolation with USE_SUBPIXELTRACKING = 1.

The calculation of the wind components considers the displacement along the corresponding "great <u>circle</u>" with the "<u>haversine formula</u>". This procedure takes into account the real time each pixel was scanned, defined through the "satellite angle input files". For this calculation, NWC/GEO-HRW algorithm has the option to correct the horizontal deviation in the apparent position of the tracer/tracking centre due to its height over the Earth surface, through a "parallax correction" of the latitude and longitude values of the tracer and tracking centre. This option is not available for the moment inside NWC/PPS-HRW software, due to the lack of equivalent procedures for "parallax correction" inside NWC/PPS software package.

Finally, NWC/GEO-HRW algorithm has also the option through SLOT_GAP configurable parameter to calculate AMVs and Trajectories considering an "initial image" for the tracer and a "later image" for the tracking centre which are not necessarily consecutive, meaning that there can be valid calculated locations of the tracer in intermediate images between both images. Related to this, an additional option exists in NWC/GEO-HRW called "<u>mixed calculation method</u>" and implemented with configurable parameter MIXED_SCANNING, through which tracers are to be tracked considering the optimal configuration for the selection of valid pairs of images, but corresponding AMVs and Trajectories are calculated considering the whole displacement for several pairs of images altogether. Both options are not available in NWC/PPS-HRW algorithm, because in general they cause great reductions in the numbers of AMVs, and they can also produce AMVs related to displacements of up to several hours (due to the long time separation which has been allowed between pairs of images in NWC/PPS-HRW, up to 120 minutes).

2.2.4 Height assignment with 'Brightness temperature interpolation method'

Operatively, this method runs before the 'tracer tracking'. It is only used when so specifically defined with configurable parameter DEFINEWITHCONTRIBUTIONS = 0, when the wind guess is used to define the tracking area in the later image with configurable parameter WIND_GUESS = 1 (which is the default option for NWC/PPS-HRW), or when NWC/PPS-CT Cloud Type or NWC/PPS-CTTH Cloud Top Temperature and Pressure outputs are not available for the processing region for the image in which "tracers" are tracked.

This height assignment method is only available if a NWP temperature forecast with a minimum number of NWP levels is provided (configurable parameter MIN_NWP_FOR_CALCULATION, with a default value of 4). If the number of NWP temperature levels is smaller, the processing of NWC/PPS-HRW algorithm stops, without calculating any AMVs or Trajectories

The input for the height assignment is the IR108/IR110 brightness temperature. With this, a 'base temperature' and a 'top temperature' are calculated with the brightness temperatures found inside the tracer. A temperature to pressure conversion is then inferred with these two values and the NWP temperature forecast.

After this, with configurable parameter USE_CLOUDTYPE = 1,2, if NWC/PPS-CT Cloud Type output is available for the processing region and image for which tracers were calculated, it is read to define which of the two calculated pressure values ('base pressure' or 'top pressure') represents better the displacement defined by the Atmospheric Motion Vector. The 'AMV cloud type' is calculated as the most common value of the NWC/PPS-CT Cloud Type inside the tracer, if its presence is at least $\frac{3}{2}$ times that of the second most common. If this condition is not fulfilled the values <u>Cloud_type</u> = 21 (multiple cloud types), = 22 (multiple clear air types), or = 23 (mixed cloudy/clear air types) are assigned.

Some tracers are the eliminated depending on this 'AMV cloud type' and the satellite channel they have been calculated with. These cases are identified inside a blue cell in *Table 5*, and are related to cloud free tracers, fractional clouds, and some cloud types for which the validation statistics are significantly worse.

In the rest of cases, the AMV pressure level is defined such as also shown in *Table 5*. If the 'AMV <u>cloud type</u>' has not been calculated, the '<u>Base pressure</u>' is considered for all AMVs because most cloud types fit better with the '<u>Base pressure</u>'.

AMV Type Values	VIS06 Channel	IR108/IR110 Channel
1 Cloud free land		
2 Cloud free sea		
3 Land contaminated by snow/ice		
4 Sea contaminated by ice		
5 Very low cumulus/stratus	Cloud Base Pressure	Cloud Base Pressure
6 Low cumulus/stratus	Cloud Base Pressure	Cloud Base Pressure
7 Medium cumulus/stratus	Cloud Base Pressure	Cloud Base Pressure
8 High opaque cumulus/stratus	Cloud Base Pressure	Cloud Base Pressure
9 Very high opaque cumulus/stratus	Cloud Base Pressure	Cloud Base Pressure
10 Fractional clouds		
11 High semitransparent thin clouds		Cloud Top Pressure
12 High semitransparent meanly thick clouds	Cloud Top Pressure	Cloud Top Pressure
13 High semitransparent thick clouds	Cloud Base Pressure	Cloud Base Pressure
14 High semitransparent above other clouds		Cloud Top Pressure
15 High semitransparent above snow/ice		Cloud Top Pressure
21 Multiple cloud types	Cloud Base Pressure	Cloud Base Pressure
22 Multiple clear air types		
23 Mixed cloudy/clear air types	Cloud Base Pressure	Cloud Base Pressure

Table 5: AMV filtering related to the 'AMV cloud type' and the satellite channel, and consideration of the 'Cloud top pressure' or 'Cloud base pressure' in

the "Brightness temperature interpolation height assignment method" for the valid cases

2.2.5 Height assignment with 'CCC method'

'CCC method - Cross Correlation Contribution method' height assignment is implemented with configurable parameters TRACKING=CC and DEFINEWITHCONTRIBUTIONS=1. It is run after the "tracking" process, and it is the default option for NWC/PPS-HRW software. The method was developed by Régis Borde and Ryo Oyama in 2008, and is fully documented in the Paper "A direct link between feature tracking and height assignment of operational AMVs" [RD.17].

It requires the use of '<u>Cross correlation</u>' as Tracking method, and the calculation of NWC/PPS-CT Cloud type and NWC/PPS-CTTH Cloud Top Temperature and Pressure for the selected region and slot before the running of NWC/PPS-HRW product. It has also the advantage of including in the height assignment all elements included in NWC/PPS-CTTH for the cloud top pressure, all of them inside the "Neural Network" process used by NWC/PPS-CTTH for this calculation:

- Brightness temperature of satellite infrared window channels.
- Brightness temperature of water vapour channels (for radiometers for which it is available).
- Brightness temperature of carbon dioxide channel (for radiometers for which it is available).
- Texture (standard deviation inside a 5x5 big pixel) of several channels or channel differences.
- Temperature differences for each pixel, considering several different channels.
- Temperature differences between each pixel and its nearest warmest/coldest neighbour, considering the infrared window channels.
- NWP temperature at several levels, surface pressure and column integrated water vapour.

It defines the 'AMV pressure' and 'AMV temperature', considering only the pressure and temperature of the pixels contributing most to the '<u>Cross correlation</u>' between the '<u>tracer</u>' in the "<u>initial image</u>' and the '<u>tracking centre</u>' in the "<u>final image</u>'.

For this, the 'partial contribution to the correlation' (CC_{ij}) from each pixel inside the 'tracer' and the 'tracking centre' is defined with the following formula, in which respectively for the 'tracer' and the 'tracking centre' $\underline{T_{ij}}/\underline{S_{ij}}$ are the 'brightness values' for each pixel, $\underline{T_M}/\underline{S_M}$ are the mean values, $\underline{\sigma_T}/\underline{\sigma_S}$ the standard deviations of the 'brightness values', and <u>NUM</u> is the total number of pixels inside the 'tracer' or 'tracking centre': $CC_{ij} = (T_{ij} - T_M) \cdot (S_{ij} - S_M) / NUM \cdot \sigma_T \cdot \sigma_S$.

A 'CCC pressure P_{CCC} ' value is then calculated for each '<u>tracking centre</u>' considering the partial contribution to the correlation (CCij) and the NWC/PPS-CTTH Cloud top pressure (CTPij) with formula $P_{CCC}=\Sigma(CCij \cdot CTPij)/\SigmaCCij$. For the calculation, only bright pixels (in visible cases) or cold pixels (in infrared cases) with valid CTPij values (corresponding to cloudy, non-fractional cloud types), and with CCij over a threshold (the mean correlation contribution or else zero) are considered. A similar calculation is done for the 'CCC temperature T_{CCC} '.

The 'CCC cloud type Ct_{CCC} ' value is calculated as the one with the highest total contribution to the correlation.

The 'CCC pressure error ΔP_{CCC} ' value is also calculated for each '<u>tracking centre</u>' with the formula $\Delta P_{CCC} = \sqrt{(\Sigma(CC_{ij} \cdot CTP_{ij}^2)/\Sigma CC_{ij} - P_{CCC}^2)}$, useful as a new Quality control parameter for the output AMVs. A maximum pressure error can be defined with configurable parameter MAXPRESSUREERROR (with default value 150 hPa).

Here it is clear that 'CCC method' offers a direct correspondence between the pressure levels given for NWC/PPS-HRW AMVs and Trajectories, and those given to the Cloud tops by NWC/PPS-CTTH product. It also defines a clear correspondence between the elements considered for the pressure level calculations, and the real cloud features observed in the satellite images. With all this, the user has necessarily to run NWC-PPS/CMA, CT and CTTH products before NWC/PPS-HRW so that all this process can be activated.

NWCSAF AEMET	User Manual for the Wind	Code:	NWC/CDOP3/PPS/AEMET/SCI/UM/Wind
	product processor of the	Issue: 0.1	Date: 12 October 2021
	NWC/PPS:	File: NWC-CD0	DP3-PPS-AEMET-SCI-UM-Wind_v0.1
Agencia Estatal de Meteorología	Science Part	Page:	24/67

With configurable parameter DEFPOSWITHCONTRIBUTIONS = 1 (which is the default option), the location of the AMV feature in both initial and final images is also defined not as the tracer/tracking centre but as the weighted position displacement defined with the similar formulae (where X_{ij} and Y_{ij} correspond to the line and column position of each pixel):

$$X_{CCC} = \Sigma(CC_{ij} \cdot X_{ij}) / \Sigma CC_{ij} \qquad Y_{CCC} = \Sigma(CC_{ij} \cdot Y_{ij}) / \Sigma CC_{ij}.$$

With this relocation of the AMV, its position is related to the part of the AMV feature with largest contribution to the correlation. When trajectories are defined (with configurable parameter CALCULATE_TRAJECTORIES = 1), tracking consecutively during several slots the same tracer, this relocation of the AMV position is only calculated for the first AMV in the trajectory and keeps the same value during all the time the trajectory is alive, to avoid discontinuities in its positioning.

Finally, in contrast to NWC/GEO-HRW algorithm, which includes modifications in "CCC method height assignment" to correct the AMV pressure value taking into account the depth of the cloud related to the AMV through the NWC/GEO-CMIC (Cloud microphysics) software output, and to calculate Clear air AMVs and their corresponding AMV pressure, this version of NWC/PPS-HRW has not these options.

This is caused by the fact that NWC/PPS-CMIC software was in process of being updated for all polar satellite series through the time NWC/PPS-HRW was being developed, and by the fact that only EOS-1 and EOS-2 satellites with MODIS radiometer could be used for calculation of water vapour AMVs, which would be very infrequent. It has been preferred to leave these options for a later release in around one year time, when the addition of MERSI/2 radiometer will allow more frequent water vapour AMVs, and the latest version of NWC/PPS-CMIC will be available for all radiometers.

2.2.6 Postprocessing: Quality control and Choice of the best wind

NWCSAF AEMet

The 'Quality Indicator' method developed by EUMETSAT (K.Holmlund, 1998, [RD.15]), and implemented in general in all AMV production centres, is used here. This method assigns a quantitative flag ('Quality Index (QI)', ranging from 0% to 100%) to any Atmospheric Motion Vector.

It is based on normalised functions fit to statistical properties in the behaviour of the AMVs. These properties are related to the expected change of the AMVs considering: temporal consistency (comparison to winds in the previous slot at the same location and level), spatial consistency (comparison to neighbour winds in the same slot at the same location and level) and consistency relative to a background (NWP wind forecast interpolated to the same slot, in the same location and level). For the 'two scale procedure', an additional 'interscale test' is computed for 'detailed AMVs' derived from a 'basic scale tracer' (compared to the corresponding 'basic scale AMV').

Several tests are applied (direction, speed and vector temporal consistency tests, vector spatial and forecast consistency tests) giving 5 different 'individual QIs'; their weighted sum provides two 'overall QIs' (after one correction affecting winds with very low speed): the 'Quality Index with forecast' and the 'Quality Index without forecast'. These "Quality index with forecast" or "Quality Index without forecast" are used for the filtering of the AMV and Trajectory data. The first one is used as default option, through configurable parameter QI_THRESHOLD_USEFORECAST = 1. The "Quality Index threshold" for the acceptance of an AMV or Trajectory as valid is defined by configurable parameter QI_THRESHOLD (with a default value of 80%).

Some differences occur here with NWC/GEO-HRW algorithm, where the default "Quality Index threshold" is 70%, and the quality of the AMVs keeps up to low values of this threshold. In NWC/PPS-HRW, it is not recommended to use significantly lower values for this threshold instead.

In spite of the common procedure in all AMV production centres, the experience in the "International Winds Workshops" has however shown that the configuration of the "<u>Quality Indices</u>" is very different for different AMV algorithms, and so a common homogeneous use for AMVs calculated with different algorithms was not possible up to now.

Because of this, a self-contained Fortran module defined by EUMETSAT and NOAA/NESDIS, calculating a '<u>Common Quality Index without forecast</u>', was distributed by the "International Winds Working Group" cochairs Steve Wanzong and Régis Borde in May 2017, so that it would be included as such without modifications by all AMV algorithms. The use of this '<u>Common Quality Index</u>' in the "2018 AMV Intercomparison Study" [RD.25] showed some skill in filtering collocated AMVs from different AMV algorithms, improving their statistical agreement.

This '<u>Common Quality Index without forecast</u>' module has been implemented in NWC/GEO-HRW v6.1, and the parameter is provided as an additional "Quality Index" for all AMVs and Trajectories. The differences of this '<u>Common Quality Index</u>' with respect to the previous ones are:

- It is only calculated for AMVs/Trajectories with at least two trajectory sectors.
- For the "spatial consistency test" only the closest "<u>neighbour AMV</u>" is considered. For the "temporal consistency test" only the "<u>prior AMV</u>" related to the same trajectory is considered.
- Four different tests are applied: direction, speed and vector difference tests for the temporal consistency, and vector difference for the spatial consistency with a double contribution.
- It is not used for the filtering of AMVs and Trajectories by NWC/GEO-HRW algorithm.

Despite the Quality control, it is detected however sometimes that an AMV has a direction or speed completely different to the ones in its vicinity, without a clear justification. To eliminate these AMVs, which can be considered as errors, a function calculating the speed and direction histograms for all valid AMVs in small areas can be run: the '<u>Final Control Check</u>' (activated as default option with configurable parameter FINALCONTROLCHECK = 1). When any of the columns of the speed or direction histograms has only one element, it is excluded: the lack in the same area of another AMV with relatively similar velocities or directions is enough to consider it an error.

2.2.7 Postprocessing: Orographic flag

Topographic information is finally incorporated to NWC/PPS-HRW algorithm, which in combination with NWP data, calculates an 'Orographic flag' to detect and reject those Atmospheric Motion Vectors affected by land influence. The reasons for this land influence can be: AMVs associated to land features incorrectly detected as cloud tracers; tracers blocked or whose flow is affected by mountain ranges; tracers associated to lee wave clouds, with atmospheric stability near mountain ranges.

The procedure reads two topographic matrices with representative "Minimum and Maximum Heights" (S_NWC_SFCMIN_<regid> and S_NWC_SFCMAX_<regid>, being <regid> the label that identifies the static region used, located in \$SM_STATIC_AUXILIARY_DIR directory). If these matrices are not available, they are calculated directly from "elevation" data for each pixel, to be provided inside \$SM_STATIC_AUXILIARY_DIR/physiography.<regid>.nc file for the processing of the given static region with NWC/PPS-HRW software. Once calculated, these matrices are stored for all runs of NWC/PPS-HRW for the given region.

These matrices are then converted to the 'Surface pressure levels corresponding to these Minimum and Maximum Heights' (P_sfcmin/P_sfcmax), considering NWP geopotential data. With these P_sfcmin/P_sfcmax values, the 'Static orographic flag' is calculated at the position of each tracer. Its possible values are:

- <u>Ind topo=0</u>: The 'Orographic flag' could not be calculated.
- <u>Ind topo=1</u>: AMV wrongly located below the lowest representative pressure level.
- <u>Ind_topo=2</u>: Very important orographic influence found in the current AMV position.
- <u>Ind_topo=3</u>: Important orographic influence found in the current AMV position.
- <u>Ind_topo=6</u>: No orographic influence found in the current AMV position.

The 'Dynamic orographic flag' is then calculated: values of 'Ind_topo' are modified to verify the possibility of a previous in time orographic influence. This part only happens if Ind_topo = 6 and the tracer is related to predecessor AMVs in previous slots. The value of Ind_topo = 6 is then modified considering the next conditions:

- Ind topo = 0: The "Orographic flag" could not be calculated.
- Ind_topo = 4: Very important orographic influence found at a previous position of the AMV.
- Ind_topo = 5: Important orographic influence found at a previous position of the AMV.
- Ind_topo = 6: No orographic influence is found in any current/previous position of the AMV.

With configurable parameter $USE_TOPO = 1$, the Orographic flag is calculated and incorporated to the output file, and AMVs with $Ind_topo = 1$ are eliminated. With $USE_TOPO = 2$ (which is the default option), all AMVs and Trajectories with any Orographic influence (i.e. with $Ind_topo = 1$ to 5) are eliminated from the output files.

2.2.8 Postprocessing: Autovalidation of NWC/PPS-HRW algorithm

NWCSAF AEMet

NWC/PPS-HRW offers the same way as NWC/GEO-HRW software the option to calculate the validation statistics for the AMVs with the NWC/PPS-HRW software itself (using as reference NWP analysis or forecast rectangular components of the wind, such as defined in Chapter 4.1 of this document, interpolated to the AMV final location and level).

This is implemented with configurable parameter NWPVAL_STATISTICS = 1,2,3,4. Depending on the values of this parameter, statistics for the different layers and satellite channels are provided separately or not. Please check Chapter 4.2 for more information on this parameter. The default option (NWPVAL_STATISTICS = 4) provides statistics for all layers and the different satellite channels separately. The validation statistics can be calculated using NWP forecast winds in real time processes, and using NWP forecast or analysis winds in reprocessing processes.

In the last case, the use of NWP analysis is implemented with configurable parameter NWPVAL_ANALYSIS = 1 (which is not the default option). Here, validation statistics will only be provided for NWC/PPS-HRW runs for which both "initial image" and "later image" are less than an hour away from the analysis date and hour (i.e., only NWC/PPS-HRW runs with both "initial image" and "later image" between 11:00Z and 13:00Z will be validated against a 12:00Z analysis run for the given day). When NWP forecast winds are used, the validation statistics are provided for all runs of NWC/PPS-HRW software instead.

The validation statistics are calculated at the end of the process of each NWC/PPS-HRW run, and the results are written in the running log of NWC/PPS-HRW, and also in a specific file under the name S_NWC_HRW-STAT_<satid>_<regid>_yyyymmddT.txt in \$SM_PRODUCT_DIR directory. Here, <satid> is the identifier of the satellite used, <regid> is the identifier of the region used, and yyyymmddT is the date for which statistics are provided (validation statistics for all outputs from the same day are included in the same file).

The following content is added to this file each time the validation statistics are run: several lines with the following format, showing the validation parameters mentioned in Chapter 5 of this document (NC, SPD, NBIAS, NMVD, NRMSVD) for the considered AMV scale "BBB" (defined as BAS, DET), AMV type "TTTTT" (defined as TOTAL, CLOUD), layer "LLL" (defined as ALL, HIG, MED, LOW) and satellite channel for which AMVs have been calculated "CCCCC" (defined as TOTAL, VIS06, IR108). The date and time of the NWC/PPS-HRW run, of the "model configuration file" used in the process, and if the validation statistics have been run against the NWP analysis or forecast winds (parameter "GGG", defined as ANA, FOR) are also specified:

yyyy-mm-ddThh:mm:ssZ PPS-HRW 7.P XXXXX [S] HRWDATE:YYYYMMDDTHHMMSSZ HRWCONF:FFFFF.CFM NWPCONF:GGG *** AMV:BBBTTTTT CH:CCCCC LAYER:LLL *** NC:RRRRR SPD[M/S]:SSS.SS NBIAS:±T.TTT NMVD:U.UUU NRMSVD:V.VVV

The parameters shown here can be used by the NWC SAF user as an option for the quality monitoring of the calculated NWC/PPS-HRW data. Two additional elements are available in the validation process of NWC/PPS-HRW algorithm:

• The first one, activated with configurable parameter NWPVAL_NWPDIFFERENCE = 1 (implemented as default option) calculates also for each AMV the "Vector difference with the NWP reference wind". This "Vector difference" can be used in Nowcasting tasks, so that the NWC SAF user is able to detect in which cases the AMV is very different to the NWP forecast wind, and may be aware for example if a warning is needed in some specific region or moment due to strong winds unforeseen by the NWP forecast.

The second one, activated with configurable parameter NWPVAL_NWPBESTFITLEVEL = 1 (implemented also as default option) calculates also for each AMV the "NWP reference wind at the best fit pressure level" (defined by its speed, direction and pressure). This "NWP model wind at the best fit pressure level" can be used in verification tasks of the "AMV height assignment", to know in which cases there is more or less agreement between the pressure level defined by NWC/PPS-HRW, and the one suggested by the NWP model reference.

2.3 DESCRIPTION OF HIGH RESOLUTION WINDS (NWC/PPS-HRW) OUTPUTS

One file for the single AMV scale, or two different files for two different AMV scales (related to 'Basic AMVs/Trajectories', and to 'Detailed AMVs/Trajectories' when so configured with configurable parameter CDET = 1), in form of BUFR or netCDF bulletins, are produced for each processed static region for every running slot. If AMVs/Trajectories have been calculated for both VIS06 and IR108/IR110 channels, they are all included in the same bulletin.

Three different types of outputs are possible for NWC/PPS-High Resolution Winds, depending on the value of configurable parameter OUTPUT_FORMAT. This parameter is defined as a list of options separated by commas, so that several options can be used at the same time; in the default configuration all options are provided as NWC/PPS-HRW output.. The available options are:

- 1. OUTPUT_FORMAT = NWC: NWC/PPS-HRW output defined as two different BUFR bulletins (for AMVs and Trajectories), related to the ones used as default option in all previous versions of NWC/GEO-HRW software.
- 2. OUTPUT_FORMAT = IWWG (included in the default option): NWC/PPS-HRW output defined as one BUFR bulletin, whose format has been defined in 2018 by the "International Winds Working Group", and which is becoming the new standard AMV BUFR format for all AMV processing centres. This option also permits NWC SAF users to have a similar processing for the NWC/PPS-HRW outputs, for NWC/GEO-HRW outputs, and for AMV outputs from other AMV processing centres around the world.
- 3. OUTPUT_FORMAT = NET (included in the default option): NWC/PPS-HRW output defined as one netCDF bulletin. This option was requested during the "2010 Madrid Users' Workshop" and the "Consolidated Report on 2010 User Survey and Users' Workshop" document (SAF/NWC/IOP/INM/MGT/2010-US+WS) for NWC/GEO-HRW software, and has also been implemented for NWC/PPS-HRW software.

All these options are equivalent to those provided for the last version of NWC/GEO-HRW software (v6.1), so that the processing of outputs from both applications can be exactly equivalent. The name of the NWC/PPS-HRW output files can besides be configured to be:

- Equivalent to the rest of output files provided by other NWC/GEO software package products, which is convenient for NWC/GEO users who also want to use NWC/PPS-HRW software (with configurable parameter OUTPUT_NAMESTYLE = GEO).
- Or equivalent to the rest of output files provided by other NWC/PPS software package products, which is convenient for NWC/PPS users who also want to use NWC/PPS-HRW software (with configurable parameter OUTPUT_NAMESTYLE = PPS, which is the default option).

2.3.1. HRW output as BUFR bulletins with NWC SAF specific format (AMVs)

When OUTPUT_FORMAT = NWC, a BUFR bulletin equivalent to the ones used as default option in the latest version of NWC/GEO-HRW software (v6.1) is written in SM PRODUCT DIR directory.

For the "Single/Basic AMV scale" the name of this file can be:

NWCSAF AEMet

- S_NWC_HRW-WIND_<satid>_<regid>-BS_YYYYMMDDThhmmssZ.bufr (if NWC/GEO name style is used, with OUTPUT_NAMESYLE=GEO).
- S_NWC_HRWbs_<satid>_<orbit>_YYYYMMDDThhmmssdZ_YYYYMMDDThhmmssdZ _<regid>_NWC.bufr

(if NWC/PPS name style is used, with OUTPUT_NAMESYLE=PPS).

For the "Detailed AMV scale" the name of this file can be:

- S_NWC_HRW-WIND_<satid>_<regid>-DS_YYYYMMDDThhmmssZ.bufr (if NWC/GEO name style is used, with OUTPUT_NAMESYLE=GEO).
- S_NWC_HRWds_<satid>_<orbit>_YYYYMMDDThhmmssdZ_YYYYMMDDThhmmssdZ _<regid>_NWC.bufr

(if NWC/PPS name style is used, with OUTPUT_NAMESYLE=PPS).

Here, "satid" is the identifier of the satellite used for the "later image" and "regid" is the identifier of the region used. "YYYYMMDDThhmmssZ" with NWC/GEO name style is the date and time (up to the seconds) of the start of the scanning of the "later image" used for the AMV calculation (as in other NWC/GEO products). "YYYYMMDDThhmmssdZ" with NWC/PPS name style is respectively the date and time (up to the tenths of second) of the start and end of the scanning of the "later image" used for the AMV calculation (as in other NWC/GEO products).

The BUFR variables used for the writing of NWC/PPS-HRW AMVs considering this format are explained in Table 6. These variables are partially based on BUFR Master Table number 0, Version number 31, and are exactly equivalent to the ones used for the latest version of NWC/GEO-HRW software (v6.1). However, the coding of the BUFR outputs has changed from using BUFRDC library to ECCODES library with this NWC/PPS-HRW implementation.

To correctly define the BUFR bulletins, the user has to define the Originating Centre of the Information through configurable parameter BUFR_CENTRE_OR (with a default value of 214, which is valid only for NWC SAF Headquarters in Madrid; numeric codes for other locations are available at the "WMO Common Code Table C-1" [RD.19]). Formally, several different BUFR messages with AMVs calculated for an only satellite channel (VIS06 or IR108/IR110), in each case with an only Subset of up to 1000 AMVs, are included in this AMV BUFR output file.

In Table 6, for all variables used for the AMV output with the NWC SAF specific BUFR format:

- The first column shows the "Descriptor code".
- The second column shows the "Descriptor Name".
- The third column shows the "Unit used for the codification of the parameter" (in some cases identified through a Code Table).
- The fourth column shows the "Scale, the number of decimals used in the codification of the parameter" (where a value of 1 is used for a precision of one decimal place and a value of -1 is used for a precision only up to the tens).
- The fifth column shows the "Reference, the default value of the parameter".
- The sixth column shows the "Number of bits used for the parameter codification", and so, the maximum value the parameter can have (for example, for parameter 060203/Number of available wind guess levels, the maximum value of the parameter is $2^7 1 = 127$).

Descriptor	Name	Name Units Scale		Scale Reference	
001007	SATELLITE IDENTIFIER	CODE TABLE 01007	0	0	10
001031	IDENTIFICATION OF	CODE TABLE 01031	0	0	16
	ORIGINATING/GENERATING CENTRE				
001032	GENERATING APPLICATION	CODE TABLE 01032	0	0	8
002023	COMPUTATION METHOD	CODE TABLE 02023	U	0	4
002057	ORIGIN OF FIRST GUESS INFORMATION	CODE TABLE 02057	0	0	4
002152	SATELLITE INSTRUMENT	FLAG TABLE 02152	0	0	31
	USED IN DATA PROCESSING				
002153	SATELLITE CHANNEL	Hz	-8	0	26
002154	CENTRE FREQUENCY SATELLITE CHANNEL BAND WIDTH	U 7	- 8	0	26
004001	YEAR	YEAR	0	0	12
004002	MONTH	MONTH	0	0	4
004003	DAY	DAY	0	0	6
004004	HOUR	HOUR	0	0	5
004005	MINUTE	MINUTE	0	0	6
004025	TIME PERIOD OR DISPLACEMENT	MINUTE	0	-2048	12
005044	(IN NWC/PPS-HRW, IDENTIFIED AS	NUMERIC	U	0	11
	ORBITNUMBER%1000)				
033035	MANUAL/AUTOMATIC QUALITY CONTROL	CODE TABLE 33035	0	0	4
060000	SEGMENT SIZE AT NADIR	PIX	0	0	7
0.00004	IN X DIRECTION (PIXELS)				
060001	SEGMENT SIZE AT NADIR	PIX	0	0	7
139000	REPLICATION OPERATOR	_	0	0	0
100000	(39 VARIABLES TO BE REPLICATED)		Ŭ	Ŭ	Ŭ
031002	EXTENDED DELAYED DESCRIPTOR	NUMERIC	0	0	16
	REPLICATION FACTOR				
0.001.00	(NUMBER OF REPLICATIONS = WINDS)		0		0.1
060100	WIND SEQUENCE NUMBER	NUMERIC	0	0	24
002028	SEGMENT SIZE AT NADIR	M	-1	0	18
002020	IN X DIRECTION		-	Ŭ	
002029	SEGMENT SIZE AT NADIR IN Y DIRECTION	М	-1	0	18
002164	TRACER CORRELATION METHOD	CODE TABLE 02164	0	0	3
005001	LATITUDE (HIGH ACCURACY)	DEGREE	5	-9000000	25
006001	LONGITUDE (HIGH ACCURACY)	DEGREE	5	-18000000	26
005011	(HIGH ACCURACY)	DEGREE	5	-9000000	25
006011	LONGITUDE INCREMENT	DEGREE	5	-18000000	26
007004	(HIGH ACCURACY)		1		1.4
007004	WIND DIRECTION	PA DECEEE TRUE	-1	0	4 0
011002	WIND SPEED	M/S	1	0	12
012001	TEMPERATURE	K	1	0	12
033007	PER CENT CONFIDENCE	8	0	0	7
	(WITH FORECAST TEST)				
033007	PER CENT CONFIDENCE	8	0	0	7
033007	PER CENT CONFIDENCE	<u> </u>	0	0	7
	(COMMON QI WITHOUT FORECAST TEST)	-			
060104	TRACER TYPE	CODE TABLE 60104	0	0	2
060103	HEIGHT ASSIGNMENT METHOD	CODE TABLE 60103	0	0	4
060200	NUMBER OF WINDS COMPUTED FOR THE TRACER	NUMERIC	0	0	3
060201	CORRELATION TEST	CODE TABLE 60201	0	0	3
060202	APPLIED QUALITY TESTS	CODE TABLE 60202	0	0	11
000203	NWP WIND GUESS LEVELS	NOMERIC	U	0	
060204	NUMBER OF PREDECESSOR WINDS	NUMERIC	0	0	7
060205	OROGRAPHIC INDEX	CODE TABLE 60205	0	0	3
060206	CLOUD TYPE (NWC SAF)	CODE TABLE 60206	0	0	5
060207	AMV CHANNEL (NWC SAF)	CODE TABLE 60207	0	0	5
060208	CORRELATION	ל גם	0	0	1.4
060209	PRESSURE CORRECTION	PA	-1	-8000	14
000210	(IN NWC/PPS-HRW, NOT USED)	111	±	0000	11

Descriptor	Name	Units	Scale	Reference	Number of bits
060211	NWP WIND DIRECTION (AT AMV LEVEL)	DEGREE TRUE	0	0	9
060212	NWP WIND SPEED (AT AMV LEVEL)	M/S	1	0	12
060213	NWP WIND DIRECTION (AT BEST FIT LEVEL)	DEGREE TRUE	0	0	9
060214	NWP WIND SPEED (AT BEST FIT LEVEL)	M/S	1	0	12
060215	NWP WIND BEST FIT LEVEL	PA	-1	0	14
060216	DIRECTION DIFFERENCE WITH NWP WIND (AT AMV LEVEL)	DEGREE TRUE	0	0	9
060217	SPEED DIFFERENCE WITH NWP WIND (AT AMV LEVEL)	M/S	1	0	12
060218	DIRECTION DIFFERENCE WITH NWP WIND (AT BEST FIT LEVEL)	DEGREE TRUE	0	0	9
060219	SPEED DIFFERENCE WITH NWP WIND (AT BEST FIT LEVEL)	M/S	1	0	12
060220	VALIDATION AGAINST NWP ANALYSIS OR FORECAST	CODE TABLE 60220	0	0	2

White entries: Fixed factors

Grey entries: Replicated factors

Table 6: Variables used for the AMV output with the NWC SAF specific BUFR format

The "general common variables" in BUFR Master Table number 0, Version number 31, are identified with codes smaller than 60000. Their explanation can be found in the "WMO FM94 BUFR Table B for Classification of elements and table", available in document [RD.20].

The "local specific variables" for NWC/PPS-HRW bulletins in this table are those with codes 60000 or higher. The Code Tables for these NWC/PPS-HRW local specific variables are explained here.

Descriptor	Description			
060103	Height assignment method			
	Values 0 to 3 are related to 'Brightness temperature interpolation height assignment method'.			
	Values 4 to 15 are related to 'CCC height assignment method'.			
	In this implementation of NWC/PPS-HRW software, only values between 0 and 5 are actually used.			
	Possible values:			
	0: 'NWP interpolation using Top pressure in Clear air AMV'			
	1: 'NWP interpolation using Top pressure in Cloudy AMV'			
	3: 'NWP interpolation using Base pressure in Cloudy AMV'			
	4: 'CCC method using lower threshold and cold branch in a Clear air AMV'			
	5: 'CCC method using higher threshold and cold branch in a Clear air AMV'			
	6: 'CCC method using lower threshold and cold/bright branch in Cloudy AMV with undefined phase'			
	7: CCC method using higher threshold and cold/bright branch in Cloudy AMV with undefined phase'			
	8: CCC method using lower threshold and cold/bright branch in Cloudy AMV with liquid phase			
	9: 'CCC method using higher threshold and cold/bright branch in a Cloudy AMV with liquid phase'			
	10: CCC method with microphysics correction using lower threshold and cold/bright branch in Cloudy			
	AMV with liquid phase			
	11: CCC method with microphysics correction using higher threshold and cold/oright branch in Cloudy			
	ANY with inquid phase			
	12: CCC method using lower uneshold and cold/bright branch in a Cloudy AMV with the phase			
	13. CCC method using night uneshou and cour/origin branch in a cloudy Aiw with the phase			
	AMV with ice phase?			
	Aive which the phase			
	AMV with ice phase'			
060104	Type of tracer			
000101	Type of fracer			
	Possible values:			
	0: 'Basic tracer'			
	1: 'Detailed tracer related to a Narrow basic tracer'			
	2: 'Detailed tracer related to a Wide basic tracer'			
	3: 'Detailed tracer unrelated to a Basic tracer'.			

Descriptor	Description
060201	Correlation test.
	Possible values:
	0: 'Wind not selected as the Best wind for a tracer not having the Best correlation value'
	1: Wind not selected as the Best wind for a tracer having the Best correlation value?
	2: Wind selected as the Best wind for a tracer not having the Best correlation value'
060202	5: Wind selected as the Best wind for a tracer having the Best correlation value .
000202	Appried Quarry tests:
	For each one the next Quality flags (Orographic flag, Forecast quality flag, Spatial quality flag, Temporal
	quality flag. Interscale quality flag), next possible values:
	0: 'Wind for which the corresponding quality test could not be calculated'
	1: 'Wind whose corresponding quality test is at least a 21% worse than for the wind calculated for the
	same tracer with the best quality test (in the orographic test, the orographic flag value is at least two units
	lower than for the wind calculated for the same tracer with the best orographic flag)'
	2: 'Wind whose corresponding quality test is up to a 20% worse than for the wind calculated for the same
	tracer with the best quality test (in the orographic test, the orographic flag value is one unit lower than for the
	wind calculated for the same tracer with the best orographic flag)'
	3: 'Wind with the best corresponding quality test among the winds calculated for a tracer'.
060205	Orographic index
	Dessible velves
	Possible values :
	for "Ind. topo" parameter in chapter 2.2.7 of this document
060206	Cloud type associated to the tracer
000200	
	Possible values:
	The values of this parameter are between 0 and 23, corresponding to those defined
	in <i>Table 5</i> of this document.
060207	Flag indicating the satellite channel used for the wind calculation
	(Updated table for NWC/PPS-HRW v7.P).
	Possible values:
	2: AVHRR/3/VIS06 or VIIRS/VIS06 or MODIS/VIS06
0.00000	16: AVHRR/3/IR108 or VIIRS/IR108 or MODIS/IR110
060220	validation against NWP analysis or forecast
	Possible values
	0: NWC/PPS-HRW autovalidation statistics against "NWP model analysis"
	1: NWC/PPS-HRW autovalidation statistics against "NWP model forecast".
	3: NWC/PPS-HRW autovalidation statistics not calculated.
T = l + l =	7 D $(1, 2)$ $(1, 2)$ $(1, 2)$ $(1, 2)$ (2)

Table 7: Description of "local specific variables" in the "NWC SAF specific BUFR format"

2.3.2. HRW output as BUFR bulletins with NWC SAF specific format (Trajectories)

When $OUTPUT_FORMAT = NWC$, if the calculation of trajectories is activated with configurable parameter CALCULATE_TRAJECTORIES = 1, a Trajectory BUFR bulletin equivalent to the one used in the latest versions of NWC/GEO-HRW software is written in \$SM PRODUCT DIR directory.

For the "Single/Basic AMV scale" the name of this file can be:

NWCSAF AEMet

- S_NWC_HRW-TRAJ_<satid>_<regid>-BS_YYYYMMDDThhmmssZ.bufr (if NWC/GEO name style is used, with OUTPUT_NAMESYLE=GEO).
- S_NWC_HRWTRAJbs_<satid>_<orbit>_YYYYMMDDThhmmssdZ YYYYMMDDThhmm ssdZ_<regid>_NWC.bufr (if NWC/PPS name style is used, with OUTPUT_NAMESYLE=PPS).

For the "Detailed AMV scale" the name of this file can be:

- S NWC HRW-TRAJ <satid> <reqid>-DS YYYYMMDDThhmmssZ.bufr (if NWC/GEO name style is used, with OUTPUT NAMESYLE=GEO).
- S NWC HRWTRAJds <satid> <orbit> YYYYMMDDThhmmssdZ YYYYMMDDThhmm ssdZ <regid> NWC.bufr (if NWC/PPS name style is used, with OUTPUT NAMESYLE=PPS).

Again, "satid" is the identifier of the satellite used for the "later image" and "regid" is the identifier of the region used. "YYYYMMDDThhmmssZ" with NWC/GEO name style is the date and time (up to the seconds) of the start of the scanning of the "later image" used for the AMV calculation (as in other NWC/GEO products). "YYYYMMDDThhmmssdZ" with NWC/PPS name style is respectively the date and time (up to the tenths of second) of the start and end of the scanning of the "later image" used for the AMV calculation (as in other NWC/PPS products).

The BUFR variables used for the writing of the NWC/PPS-HRW Trajectories considering this format are explained in Table 8. Again, these variables are partially based on BUFR Master Table number 0, Version number 31, and are equivalent to the ones used for the latest version of NWC/GEO-HRW software (v6-1). However, the coding of the BUFR outputs has changed from using BUFRDC library to ECCODES library with this NWC/PPS-HRW implementation.

As previously also seen, to correctly define the BUFR bulletins, the user has to define the Originating Centre of the Information through configurable parameter BUFR_CENTRE_OR (with a default value of 214, which is valid for NWC SAF Headquarters in Madrid; the numeric codes for other locations are available at the "WMO Common Code Table C-1" [RD.19]).

Formally, different BUFR messages with an only subset with one Trajectory each (with up to 24 Trajectory sectors in the trajectory), are included in this Trajectory BUFR output file.

The explanation of the "general common variables" and "local specific variables" used for the writing of the Trajectory BUFR output, is equivalent to that for the AMV BUFR output in the previous chapter.

Descriptor	Name	Units	Scale	Reference	Number of bits
001007	SATELLITE IDENTIFIER	CODE TABLE 01007	0	0	10
001031	IDENTIFICATION OF ORIGINATING/GENERATING CENTRE	CODE TABLE 01031	0	0	16
001032	GENERATING APPLICATION	CODE TABLE 01032	0	0	8
002023	SATELLITE DERIVED WIND COMPUTATION METHOD	CODE TABLE 02023	0	0	4
002057	ORIGIN OF FIRST GUESS INFORMATION	CODE TABLE 02057	0	0	4
002152	SATELLITE INSTRUMENT USED IN DATA PROCESSING	FLAG TABLE 02152	0	0	31
002153	SATELLITE CHANNEL CENTRE FREQUENCY	Hz	-8	0	26
002154	SATELLITE CHANNEL BAND WIDTH	Hz	-8	0	26
004001	YEAR	YEAR	0	0	12
004002	MONTH	MONTH	0	0	4
004003	DAY	DAY	0	0	6
004004	HOUR	HOUR	0	0	5
004005	MINUTE	MINUTE	0	0	6
004025	TIME PERIOD OR DISPLACEMENT	MINUTE	0	-2048	12
005044	SATELLITE CYCLE NUMBER (IN NWC/PPS-HRW, IDENTIFIED AS ORBITNUMBER%1000)	NUMERIC	0	0	11
033035	MANUAL/AUTOMATIC QUALITY CONTROL	CODE TABLE 33035	0	0	4
060000	SEGMENT SIZE AT NADIR IN X DIRECTION (PIXELS)	PIX	0	0	7
060001	SEGMENT SIZE AT NADIR IN Y DIRECTION (PIXELS)	PIX	0	0	7
060102	TRAJECTORY SEQUENCE NUMBER	NUMERIC	0	0	24
119000	REPLICATION OPERATOR (19 VARIABLES TO BE REPLICATED)	-	0	0	0
031002	EXTENDED DELAYED DESCRIPTOR REPLICATION FACTOR (1 REPLICATION = 1 TRAJECTORY)	NUMERIC	0	0	16
002164	TRACER CORRELATION METHOD	CODE TABLE 02164	0	0	3
005001	LATITUDE (HIGH ACCURACY)	DEGREE	5	-9000000	25
006001	LONGITUDE (HIGH ACCURACY)	DEGREE	5	-18000000	26
005011	LATITUDE INCREMENT (HIGH ACCURACY)	DEGREE	5	-9000000	25
006011	LONGITUDE INCREMENT (HIGH ACCURACY)	DEGREE	5	-18000000	26
007004	PRESSURE	PA	-1	0	14
011001	WIND DIRECTION	DEGREE TRUE	0	0	9
011002	WIND SPEED	M/S	1	0	12
012001	TEMPERATURE	K	1	0	12
033007	PER CENT CONFIDENCE (WITH FORECAST TEST)	<u>0</u> 0	0	0	7
033007	PER CENT CONFIDENCE (WITHOUT FORECAST TEST)	Ş	0	0	7
033007	PER CENT CONFIDENCE (COMMON QI WITHOUT FORECAST TEST)	8	0	0	7
060103	HEIGHT ASSIGNMENT METHOD	CODE TABLE 60103	0	0	4
060205	OROGRAPHIC INDEX	CODE TABLE 60205	0	0	3
060206	CLOUD TYPE (NWC SAF)	CODE TABLE 60206	0	0	5
060207	AMV CHANNEL (NWC SAF)	CODE TABLE 60207	0	0	5
060208	CORRELATION	8	0	0	7
060209	PRESSURE ERROR	PA	-1	-8000	14
060210	PRESSURE CORRECTION (IN NWC/PPS-HRW, NOT USED)	PA	-1	-8000	14

White entries: Fixed factors

Grey entries: Replicated factors

Table 8: Variables used for the Trajectory output with the "NWC SAF specific BUFR format"

NWCSAF AEMet

2.3.3. HRW output as BUFR bulletins with the previous IWWG format (AMVs)

The latest version of NWC/GEO-HRW software (v6.1) has the option to write the AMV output through an AMV BUFR bulletin equivalent to the one defined previously as common AMV output format by the "International Winds Working Group (IWWG)" for all AMV production centres (through OUTPUT_FORMAT = EUM).

However, this option was expected by the "International Winds Working Group (IWWG)" to be superseded by the one defined in chapter 2.3.4 of this ATBD, following next actions and recommendations from the 2018/14th International Winds Workshop:

- IWW14 WG1 Action 6: AMV producers and users to adopt the new AMV BUFR template. Due date: 30 April 2019.
- IWW14 WG2 Recommendation 4: AMV producers to provide heritage AMV BUFR dissemination until at least July 2019.
- IWW14 WG2 Recommendation 5: NWP users to aim to have switched to the new AMV BUFR by 2020.

Considering this, and taking into account that NWC/PPS-HRW is being released to users in 2021, it has been considered convenient to remove this option from NWC/PPS-HRW software, so that NWC SAF users who want to process similarly AMVs from different AMV producers use for this the "NWC/PPS-HRW BUFR output using the 2018 IWWG format", described in chapter 2.3.4 of this "User Manual".

2.3.4. HRW output as BUFR bulletins with the 2018 IWWG format (AMVs)

When OUTPUT_FORMAT = IWWG (implemented in the default option), an AMV BUFR bulletin equivalent to the one defined in 2018 as common AMV output format by the "International Winds Working Group (IWWG)" for all AMV production centres, is written in <code>\$SM_PRODUCT_DIR</code> directory.

For the "Single/Basic AMV scale" the name of this file can be:

NWCSAF AEMet

- S_NWC_HRW-WINDIWWG_<satid>_<regid>-BS_YYYYMMDDThhmmssZ.bufr (if NWC/GEO name style is used, with OUTPUT_NAMESYLE=GEO).
- S_NWC_HRWbs_<satid>_<orbit>_YYYYMMDDThhmmssdZ_YYYYMMDDThhmmssdZ <regid>.bufr

(if NWC/PPS name style is used, with OUTPUT_NAMESYLE=PPS).

For the "Detailed AMV scale" the name of this file can be:

- S_NWC_HRW-WINDIWWG_<satid>_<regid>-DS_YYYYMMDDThhmmssZ.bufr (if NWC/GEO name style is used, with OUTPUT_NAMESYLE=GEO).
- S_NWC_HRWds_<satid>_<orbit>_YYYYMMDDThhmmssdZ_YYYYMMDDThhmmssdZ _<regid>.bufr

(if NWC/PPS name style is used, with OUTPUT_NAMESYLE=PPS).

Again, "satid" is the identifier of the satellite used for the "later image" and "regid" is the identifier of the region used. "YYYYMMDDThhmmssZ" with NWC/GEO name style is the date and time (up to the seconds) of the start of the scanning of the "later image" used for the AMV calculation (as in other NWC/GEO products). "YYYYMMDDThhmmssdZ" with NWC/PPS name style is respectively the date and time (up to the tenths of second) of the start and end of the scanning of the "later image" used for the AMV calculation (as in other NWC/GEO products).

The BUFR variables used for the writing of the NWC/PPS-HRW AMVs considering this format, are explained in Table 9, with some explanations in red about how some variables are defined by NWC/PPS-HRW software.

The variables are based on BUFR Master Table number 0, Version number 31. These variables correspond exactly to "Sequence 310077 – satellite derived winds" included in the corresponding "sequence table".

Again, to correctly define the BUFR bulletins, the user has to define the Originating Centre of the Information through configurable parameter BUFR_CENTRE_OR (with a default value of 214, which is valid for NWC SAF Headquarters in Madrid; the numeric codes for other locations are available at the WMO Common Code Table C-1 [RD.19]).

Formally, several different BUFR messages with up to 100 subsets with an only AMV each, all of them related to the same satellite channel, are included in this AMV BUFR output file.

This format is a kind a blend of the NWC SAF AMV and Trajectory BUFR specific formats, because of including at the same time information related to the reference AMV to be used, and the up to four latest AMVs in the NWC/PPS-HRW trajectory which were used for the AMV calculation (when "mixed calculation method" is used).

It is recommended for NWC SAF users to adopt progressively this format for all applications, because this format will become the reference format for AMVs coming from all AMV production centres in the coming months/years. Nevertheless, the larger size of the corresponding files is also to be taken into account.

Descriptor	Name	Units
PROCESSING	INFORMATION	
001033	IDENTIFICATION OF ORIGINATING/GENERATING CENTRE	CODE TABLE 01033
	(not used)	
001034	IDENTIFICATION OF ORIGINATING/GENERATING SUBCENTRE	CODE TABLE 01034
001001	(configurable parameter BUFR CENTRE OR)	00000 110000 01001
025061	SOFTWARE IDENTIFICATION AND VERSION NUMBER	CCITTIA5
020001	("NWC/HRW V7.P")	001111110
025062	DATABASE IDENTIFICATION (not used)	NUMERIC
SATELLITE I	INSTRUMENT IDENTIFICATION	
001007	SATELLITE IDENTIFIEB	CODE TABLE 01007
002153	SATELLITE CHANNEL CENTRE FREQUENCY	HZ
001012	DIDECTION OF MOTION OF MOVING OBSEDVING DIATEORM	DECREE
001012	(not used)	DEGREE
201138	(HOU USED) CHANCE DATA WIDTH (22 BITS PER PARAMETER)	_
002026	CROSS-TRACK RESOLUTION (not used)	м
002020	ALONG-TRACK RESOLUTION (not used)	M
201000	CHANCE DATA NIDTH (CANCEL)	14
ZUIUUU	CHANGE DATA WIDTH (CANCEL)	_
METHODS	CECMENT CITE IN NOTE IN V DIDECTION	М
002028	SEGMENT SIZE AT NADIR IN X-DIRECTION	М
002020	(up to a limit of 202140 m)	М
002029	(up to a limit of 262140 m)	141
002161	(up to a limit of 202140 m)	
002101	TRACER DROCESSING METHOD	CODE TABLE 02164
002104	CATELITE-DEDIVED WIND COMDUMNATION METHOD	CODE TABLE 02104
002023	IND/SEA OUNLIFIED (not used)	CODE TABLE 02023
008012	DAV (NICUE OUNITEER (NOC USED)	CODE TABLE 08012
008013	DAT/NIGHT QUALIFIER (HOC USED)	CODE TABLE 08013
PINAL AMV L	CDID DOINE IDENEITED (mat wood)	NUMERIC
001124	GRID POINT IDENTIFIER (NOU USED)	NUMERIC
005001	LATITUDE (HIGH ACCURACY)	DEGREE
006001	LONGITUDE (HIGH ACCURACY)	DEGREE
004001	YEAR	YEAR
004002	MONTH	MONTH
004003	DAY	DAY
004004	HOUR	HOUR
004005	MINUTE	MINUTE
004006	SECOND	SECOND
004086	LONG TIME PERIOD OR DISPLACEMENT	SECOND
	(respect to the "Reference time")	
002162	EXTENDED HEIGHT ASSIGNMENT METHOD	CODE TABLE U2162
007004	PRESSURE	PA
011001	WIND DIRECTION	DEGREE TRUE
011002	WIND SPEED	M/S
011003	U-COMPONENT	M/S
011004	V-COMPONENT	M/S
012001	TEMPERATURE/AIR TEMPERATURE	K
020014	HEIGHT OF TOP OF CLOUD	M
007004	(NOU USED IN NWC/PPS-HRW)	DECDEE
007024	SATELLITE ZENITH ANGLE	DEGREE
001023	OBSERVATION SEQUENCE NUMBER	NUMERIC
104000	(v = reference finage number in image information group) DELAYED DEDITORMION OF 4 DECORTRECTS	
104000	DELAVED DECODIDEDD DEDITORETON FROMOD (ONOR)	
002162	DELAIED DESCRIPTOR REPLICATION FACTOR (UNCE)	NUMERIC
007004	EALENDED HEIGHT ASSIGNMENT METHUD	CODE TABLE UZI6Z
012001		FA V
020014	IDMFDRAIURE/AIR TEMPERATURE	K
020014	(not used in NWC/DDS-UDW)	141
1	(HOU USED IN NWC/PPS-ARW)	

Descriptor	Name	Units	
IMAGE INFOR	RMATION	·	
113000	DELAYED REPLICATION OF 13 DESCRIPTORS	-	
031001	DELAYED DESCRIPTOR REPLICATION FACTOR (TWO TO FIVE TIMES)	NUMERIC	
004086	LONG TIME PERIOD OR DISPLACEMENT	SECOND	
	(respect to the "Reference time")		
002020	SATELLITE CLASSIFICATION	CODE TABLE 02020	
001007	SATELLITE IDENTIFIER	CODE TABLE 01007	
002019	SATELLITE INSTRUMENTS	CODE TABLE 02019	
005042	CHANNEL NUMBER	NUMERIC	
002153	SATELLITE CHANNEL CENTRE FREQUENCY	Hz	
005040	ORBIT NUMBER (not used)	NUMERIC	
007024	SATELLITE ZENITH ANGLE (for the tracer in each image)	DEGREE	
005021	BEARING OR AZIMUTH (not used)	DEGREE	
002162	EXTENDED HEIGHT ASSIGNMENT METHOD	CODE TABLE 02162	
007004	(NOT USED FOR THE THILIAI IMAGE)	D۵	
007004	(not used for the initial image)	PA	
012001		V	
012001	(not used for the initial image)	IX	
020014	HEIGHT OF TOP OF CLOUD	М	
020011	(not used in NWC/PPS-HRW)	11	
INTERMEDIAT	TE VECTORS (FOR EACH COMPONENT)		
119000	DELAYED REPLICATION OF 19 DESCRIPTORS	-	
031001	DELAYED DESCRIPTOR REPLICATION FACTOR (ONE TO FOUR TIMES)	NUMERIC	
004086	LONG TIME PERIOD OR DISPLACEMENT	SECOND	
	(for the AMV initial image respect to the Reference time)		
004086	LONG TIME PERIOD OR DISPLACEMENT	SECOND	
	(for the AMV final image respect to the Reference time)		
005001	LATITUDE (HIGH ACCURACY)	DEGREE	
006001	LONGITUDE (HIGH ACCURACY)	DEGREE	
011003	U-COMPONENT	M/S	
011004	V-COMPONENT	M/S	
011113	TRACKING CORRELATION OF VECTOR	NUMERIC	
	(only used with "Correlation method" tracking)		
025148	COEFFICIENT OF VARIATION (not used)	NUMERIC	
103000	DELAYED REPLICATION OF 3 DESCRIPTORS	-	
031001	DELAYED DESCRIPTOR REPLICATION FACTOR (ONCE)	NUMERIC	
008023	FIRST ORDER STATISTICS (4 = MEAN VALUE)	CODE TABLE 08023	
011003	U-COMPONENT (not used)	M/S	
011004	V-COMPONENT (not used)	M/S	
008023	FIRST ORDER STATISTICS (63 = CANCEL)	CODE TABLE 08023	
103000	DELAYED REPLICATION OF 3 DESCRIPTORS	-	
031001	DELAYED DESCRIPTOR REPLICATION FACTOR (ONCE)	NUMERIC	
020111	X-AXIS ERROR ELLIPSE MAJOR COMPONENT (not used)	M	
020112	Y-AXIS ERROR ELLIPSE MAJOR COMPONENT (not used)	M	
020114	ANGLE OF X-AXIS IN ERROR ELLIPSE (NOL USED)	DEGREE	
001022	ING FORECAST DATA	CODE MADIE 01033	
001033	(98 - ECMME, 85 - ME, 7 - NOA)/NCEP, 255 - other)	CODE TABLE 01033	
008021	FORECAST STONIETCANCE $(27 = \text{FIRST CHESS})$	CODE TABLE 08021	
007004	PRESSURE	PA	
23.001	(for NWP data at AMV guess level, if calculated)		
011095	U-COMPONENT OF THE MODEL WIND VECTOR	M/S	
	(for NWP data at AMV guess level, if calculated)		
011096	V-COMPONENT OF THE MODEL WIND VECTOR	M/S	
	(for NWP data at AMV guess level, if calculated)		
008021	FORECAST SIGNIFICANCE $(4 = FORECAST)$	CODE TABLE 08021	
007004	PRESSURE	PA	
	(for NWP data at AMV level)		
011095	U-COMPONENT OF THE MODEL WIND VECTOR	M/S	
	(for NWP data at AMV level)		
011096	V-COMPONENT OF THE MODEL WIND VECTOR	M/S	
	(for NWP data at AMV level)		
008021	FORECAST SIGNIFICANCE (31 = CANCEL)	CODE TABLE 08021	
008086	VERTICAL SIGNIFICANCE FOR NWP (10 = BEST FIT LEVEL)	FLAG TABLE 08086	
007004	PRESSURE	PA	
011005	(IOR NWP data at AMV best fit level, if calculated)		
011095	U-COMPONENT OF THE MODEL WIND VECTOR	M/S	
011000	(IOI NWF Gala at AMV DEST IIT LEVEL, II CALCULATED)	M/0	
011030	(for NWP data at AMV best fit level if calculated)	M/ 2	
008086	VERTICAL SIGNIFICANCE FOR NWP $(4095 = CANCEL)$	CODE TABLE 08086	

Descriptor	Name	Units
FINAL AMV Q	QUALITY	
102004	REPLICATE 2 DESCRIPTORS 4 TIMES	-
001044	GENERATING APPLICATION (4 = COMMON IWWG QI)	CODE TABLE 01044
	(5 - QI WITHOUT FORECAST)	
	(6 - QI WITH FORECAST)	
	(255 - MISSING)	
033007	PERCENT CONFIDENCE (if calculated)	ଚ
008092	MEASUREMENT UNCERTAINTY EXPRESSION $(0 = \text{STD UNCERTAINTY})$	CODE TABLE 08092
007004	PRESSURE (AMV pressure error, if calculated)	PA
011003	U-COMPONENT (not used)	M/S
011004	V-COMPONENT (not used)	M/S
008092	MEASUREMENT UNCERTAINTY EXPRESSION $(31 = CANCEL)$	CODE TABLE 08092
033066	AMV QUALITY FLAG (not used)	FLAG TABLE 33066
CLOUD DATA	AND MICROPHYSICS	-
020081	CLOUD AMOUNT IN SEGMENT	90
	(percentage of cloudy pixels with a contribution	
	to CCC method calculations, if calculated)	
020012	CLOUD TYPE	CODE TABLE 20012
020056	CLOUD PHASE	CODE TABLE 20056
117000	DELAYED REPLICATION OF 17 DESCRIPTORS	-
031001	DELAYED DESCRIPTOR REPLICATION FACTOR (ONCE)	NUMERIC
008023	FIRST ORDER STATISTICS (4 = MEAN VALUE)	CODE TABLE 08023
020016	PRESSURE AT TOP OF CLOUD (not used)	PA
008092	MEASUREMENT UNCERTAINTY EXPRESSION $(0 = \text{STD UNCERTAINTY})$	CODE TABLE 08092
008003	VERTICAL SIGNIFICANCE (2 = TOP OF CLOUD)	CODE TABLE 08003
012001	TEMPERATURE/AIR TEMPERATURE (not used)	K
008003	VERTICAL SIGNIFICANCE (63 = CANCEL)	CODE TABLE 08003
020016	PRESSURE AT TOP OF CLOUD (not used)	PA
008092	MEASUREMENT UNCERTAINTY EXPRESSION (31 = CANCEL)	CODE TABLE 08092
025149	OPTIMAL ESTIMATION COST (not used)	NUMERIC
020016	PRESSURE AT TOP OF CLOUD (not used)	PA
020014	HEIGHT OF TOP OF CLOUD (not used)	М
013093	CLOUD OPTICAL THICKNESS (not used)	NUMERIC
013109	ICE/LIQUID WATER PATH (Up to a limit of 1.020 kg/m2)	KG/M2
040038	CLOUD PARTICLE SIZE (0 = MISSING)	М
008011	METEOROLOGICAL FEATURE (12 = CLOUD)	CODE TABLE 08011
014050	EMISSIVITY (not used)	8
008011	METEOROLOGICAL FEATURE (63 = CANCEL)	CODE TABLE 08011
008023	FIRST ORDER STATISTICS (63 = CANCEL)	CODE TABLE 08023

Table 9: Variables used for the AMV output with the "2018 IWWG BUFR format"

2.3.5. HRW output as netCDF bulletins

When $OUTPUT_FORMAT = NET$ (implemented in the default option), an AMV and Trajectory netCDF output bulletin is written in $SM_PRODUCT_DIR$ directory.

For the "Single/Basic AMV scale" the name of this file can be:

- S_NWC_HRW_<satid>_<regid>-BS_YYYYMMDDThhmmssZ.nc (if NWC/GEO name style is used, with OUTPUT_NAMESYLE=GEO).
- S_NWC_HRWbs_<satid>_<orbit>_YYYYMMDDThhmmssdZ_YYYYMMDDThhmmssdZ _<regid>.nc

(if NWC/PPS name style is used, with OUTPUT_NAMESYLE=PPS).

For the "Detailed AMV scale" the name of this file can be:

- S_NWC_HRW_<satid>_<regid>-DS_YYYYMMDDThhmmssZ.nc (if NWC/GEO name style is used, with OUTPUT_NAMESYLE=GEO).
- S_NWC_HRWds_<satid>_<orbit>_YYYYMMDDThhmmssdZ_YYYYMMDDThhmmssdZ _<regid>.nc

(if NWC/PPS name style is used, with OUTPUT_NAMESYLE=PPS).

Again, "satid" is the identifier of the satellite used for the "later image" and "regid" is the identifier of the region used. "YYYYMMDDThhmmssZ" with NWC/GEO name style is the date and time (up to the seconds) of the start of the scanning of the "later image" used for the AMV calculation (as in other NWC/GEO products). "YYYYMMDDThhmmssdZ" with NWC/PPS name style is respectively the date and time (up to the tenths of second) of the start and end of the scanning of the "later image" used for the AMV calculation (as in other NWC/GEO products).

The High level structure of the netCDF output for the NWC/PPS-High Resolution Winds is shown in *Table 10*. It contains one series of data, containing all the AMVs/Trajectories derived for all satellite channels in the corresponding run of NWC/PPS-HRW. The dimension of the series of data is defined by "number_of_observations_XXXXX" parameter, which contains the amount of AMVs calculated for the given run of NWC/GEO-HRW for "XXXXX" satellite channel. In *Table 10*, label "XXXX" is to be modified with the different satellite channels for which AMVs and Trajectories are calculated: "VIS06" or "IR108".

If configurable parameter CALCULATE_TRAJECTORIES = 1, the trajectories related to the corresponding AMV scale are also included in this netCDF output file. Each trajectory contains "nb_sect" groups, with the corresponding trajectory sectors.

Parameter types	Content
Types:	
compound Segment	// Structure to contain 1 Segment data
Segment(*) Trajectory	<pre>// Structure to contain n Segment data (1 Trajectory)</pre>
compound Wind	<pre>// Structure to contain 1 Data (including AMV and Trajectory)</pre>
Variables:	
Wind wind_XXXXX(number_of_observations_XXXXX)	// Wind data for channel XXXXX
Dimensions:	
number_of_observations_XXXXX	// Number of AMVs for channel XXXXX
Attributes	

Table 10: High Level specification of the NWC/PPS-HRW netCDF output

The detailed structure of the netCDF output for the NWC/PPS-High Resolution Winds and Trajectories is shown in *Table 11*. The "BUFR Code Tables" used are described in chapter 2.3.1 of this document.

CUMETSAT	AEMet	User Manual for the Wind product processor of the NWC/PPS·	Code: Issue: 0.1 File: NWC-CD	NWC/CDOP3/PPS/AEMET/SCI/UM/Wind Date: 12 October 2021 OP3-PPS-AEMET-SCI-UM-Wind v0.1
- NWC SAF	Agencia Estatal de Meleorología	Science Part	Page:	41/67

The list of common attributes described in the "Data Output Format for the NWC/PPS" document [AD.6] is also to be taken here into account. Considering these "Common attributes" and NWC/PPS-HRW outputs:

- The "product_quality" is the "mean Quality index" (with/without forecast, depending on the value of configurable parameter QI_THRESHOLD_USEFORECAST), of all AMVs written in the netCDF output file. This parameter gives an idea of the mean quality of all AMVs, defined as a percentage value (from 0% to 100%).
- The "product_completeness" is the "percentage of AMVs" written in the netCDF output file, with respect to the theoretical value of AMVs defined by the software at all preliminary locations. This parameter gives an idea of how many AMVs were successfully calculated, defined also as a percentage value (from 0% to 100%).

Parameter types	Content
Types:	
compound segment	<pre>// Structure to contain 1 Trajectory Segment</pre>
float latitude	<pre>// Latitude (degree_north)</pre>
float longitude	// Longitude (degree_east)
float latitude increment	// Latitude Increment (degree_north)
float longitude increment	// Longitude increment (degree_east)
float air prossuro	// Air Temperature (K)
float air pressure error	// Air Pressure (Pa)
float air pressure correction	// Air Pressure Correction (Pa) (not used in NWC/PPS-HRW)
float air pressure nwp best fit level	// Air Pressure NWP Model at Best Fit Level (Pa)
float wind speed	// Wind Speed (m/s)
float wind from direction	// Wind Direction (from which wind is blowing) (°)
unsigned byte quality_index_with_forecast	// Quality Index with Forecast Test (%, [0,100])
unsigned byte quality_index_without_forecast	<pre>// Quality Index without Forecast Test (%, [0,100])</pre>
unsigned byte quality_index_iwwg_value	<pre>// Quality Index with common IWWG quality index (%, [0,100])</pre>
unsigned byte tracer_correlation_method	<pre>// Tracer Correlation method (BUFR code table 002164)</pre>
unsigned byte tracer_type	<pre>// Tracer Type (BUFR code table 060102)</pre>
unsigned byte height_assignment_method	<pre>// Height Assignment Method (BUFR code table 060103)</pre>
unsigned byte orographic_index	// Orographic index (BUFR code table 060205)
unsigned byte cloud type	// NWC SAF/Cloud Type (BUFR code table 060206)
unsigned byte correlation	// Correlation (%, [0,100])
compound wind	// Structure to contain 1 AMV data
unsigned int wind idy	// Wind sequence Number
unsigned int previous wind idx	// Prior wind sequence number
unsigned byte number of winds	// Number of winds computed for the tracer
unsigned byte correlation test	// Correlation test (BUFR code table 060201)
unsigned short quality test	// Applied Quality tests (BUFR code table 060202)
unsigned int segment_x	<pre>// Segment size at nadir in X direction (meters)</pre>
unsigned int segment_y	<pre>// Segment size at nadir in Y direction (meters)</pre>
unsigned int segment_x_pix	<pre>// Segment size at nadir in X direction (pixels)</pre>
unsigned int segment_y_pix	<pre>// Segment size at nadir in Y direction (pixels)</pre>
float latitude	// Latitude (degree_north)
float longitude	<pre>// Longitude (degree_east)</pre>
float latitude_increment	<pre>// Latitude increment (degree_north)</pre>
float longitude_increment	// Longitude increment (degree_east)
float air temperature	// Air Temperature (K)
float air pressure error	// Air Pressure (Pa)
float air pressure correction	// Air Pressure Correction (Pa) (not used in NWC/PPS-HRW)
float air pressure nwp at best fit level	// Air Pressure NWP Model at Best Fit Level (Pa)
float wind speed	// Wind Speed (m/s)
float wind from direction	// Wind Direction (from which wind is blowing) (°)
float wind speed nwp at amv level	// Wind Speed of NWP Model at AMV Level (m/s)
float wind_from_direction_nwp_at_amv_level	<pre>// Wind Direction of NWP Model at AMV Level (°)</pre>
<pre>float wind_speed_nwp_at_best_fit_level</pre>	// Wind Speed of NWP Model at Best Fit Level (m/s)
float wind from direction nwp best fit level	<pre>// Wind Direction of NWP Model at Best Fit Level (°)</pre>
float wind speed difference nwp at amv level	<pre>// Wind Speed of Difference with NWP model (m/s)</pre>
float wind from direction difference nwp at amv level	<pre>// Wind Direction of Difference with NWP model (°)</pre>
float wind speed difference nwp_at_best_fit_level	// Wind Speed of Difference with NWP model best fit (m/s)
Itoat wind from direction difference nwp at best fit level	// Wind Direction of Difference with NWP model best fit (*)
unsigned byte quality_index_with_forecast	// Quality Index with Porecast Test (%, [0,100])
unsigned byte quality_index_without_forecast	// Quality Index with common INWG quality index (% [0,100])
unsigned byte tracer correlation method	<pre>// Tracer Correlation method (BUFR code table 002164)</pre>
unsigned byte tracer type	// Tracer Type (BUFR code table 060102)
unsigned byte height assignment method	// Height Assignment Method (BUFR code table 060103)
unsigned byte orographic_index	// Orographic index (BUFR code table 060205)
unsigned byte cloud_type	// NWC SAF/Cloud Type (BUFR code table 060206)
unsigned byte correlation	// Correlation (%, [0,100])
<pre>segment(*) trajectory</pre>	<pre>// Trajectory defined as a variable-length array</pre>
	of Segment structures
··· 111	
Variables:	// wind (a) with the manifesteries and the
Wind Wind XXXXX (number_of_observations_XXXX)	// WINd (AMV + Trajectory) data
number of observations XXXXX	// Number of AMVs for channel XXXXX
Attributes:	// NAMEET OF HEVE FOF CHAINET AAAAA
cycle	// In NWC/PPS-HRW, used as Satellite orbit number
first quess	// Origin of the first guess BUFR code table 025202)
long name	"NWC/PPS High Resolution Winds"
manual_automatic_quality control	// Manual/automatic quality control (BUFR code table 033035)
number_of_nwp_wind_levels	// NWP wind levels used for processing
sensor_band_central_radiation_frequency	// Satellite channel centre frequency (Hz)
sensor_band_central_radiation_width	// Satellite channel band width (Hz)
sensor_band_identifier	// Satellite channel id
standard_name	"Atmospheric winds"
time period	// Time period between satellite images
validation nwp forecast or analysis	<pre>// valuation NWP analysis/Iorecast (BUFR code table 060220) // Satellite wind comp method (BUER code table 002022)</pre>
wind computation method	// Sacerrice wind comp. mechod (BUFK Code Labie 002023)

Table 11: Detailed specification of the NWC/PPS-HRW netCDF output

2.3.6. Output data filterings

Several output data filterings are included during NWC/PPS-HRW algorithm running, which depend on the value of several configurable parameters in the "NWC/PPS-HRW model configuration file". These configurable parameters are:

- AMV_BANDS (default value VIS06,IR108 for NWC/PPS-HRW), which defines the channels for which AMVs and Trajectories are calculated.
- QI_THRESHOLD: defines the "<u>Quality index threshold</u>" for the AMVs and Trajectories in the output files. Depending on configurable parameter QI_THRESHOLD_USEFORECAST, the "<u>Quality index with forecast</u>" (which is the default option) or the "<u>Quality index without forecast</u>" are respectively used for the AMV filtering).
- MAXPRESSUREERROR: defines the maximum "AMV <u>pressure error</u>" (in hPa) allowed in the output AMVs and Trajectories, when "CCC height assignment method" has been used.
- MIN_CORRELATION: defines the minimum correlation (as a percentage value) in the output AMVs and Trajectories, when the "Cross Correlation tracking" has been used.
- FINALFILTERING: defines several filterings in the output AMVs and Trajectories, depending on its value:
 - With FINALFILTERING>0 and VERYLOWINFRAREDAMVS=0, infrared AMVs below 900 hPa are eliminated.
 - With FINALFILTERING>1 (which is the default option through FINAFILTERING = 2), the "<u>AMV cloud type</u>" fi*ltering* defined in *Table 5* is additionally implemented.
 - With FINALFILTERING>2, AMVs with "spatial quality flag"=1,2 are additionally eliminated.
 - With FINALFILTERING=4, AMVs with "spatial quality flag"=0 are additionally eliminated.

3. IMPLEMENTATION OF HIGH RESOLUTION WINDS (NWC/PPS-HRW)

Two main steps are identified. The user manually interacts with the NWC/PPS software package during the installation step, and the NWC/PPS-HRW execution step is automatically monitored by the NWC/PPS running step (such as for example defined in [AD.6]).

3.1 INSTALLATION AND PREPARATION OF NWC/PPS SOFTWARE PACKAGE

The right to use, copy or modify this software is in accordance with EUMETSAT policy for the NWC/PPS software package. Once the user has obtained the permissions to download the software package, the software installation procedure does not require any special resources. It is limited to:

• Define some environment variables which are needed for the installation and definition of directories for NWC/PPS-HRW software. This can be done through command "export" in the terminal or in the working "profile" file:

```
# Specific environment variables for NWC/PPS-HRW installation
export TZ=UTC
export SAFNWC=(dir where NWC/PPS-HRW is to be installed)
export ECCODES DEFINITION PATH=`codes info -d`
export SM ECCODES DIR=(dir where local /share/eccodes/definitions are defined)
export CC=gcc
export FC=gfortran
export CFLAGS="-03 -DPPSHRW"
export FFLAGS="-03"
export ARCH=linux
export PATH=$SAFNWC/bin:$PATH
# Specific environment variables for NWC/PPS-HRW directory location
export SM HRWTEMP DIR=(dir where HRW temporal files are to be located)
export SM_CONFIG_DIR=(dir where HRW configuration files are located)
export SM HRWAUX DIR=(dir where HRW auxiliary files are located)
export SM_STATIC_AUXILIARY DIR=(dir where HRW static region files are located)
export SM NWPDATA DIR=(dir where NWP data are to be located)
export SM SUNSATANGLES DIR=(dir where "sunsatangles" data are to be located)
export SM IMAGER DIR=(dir where "avhrr/viirs/modis" data are to be located)
```

- export SM_PRODUCT_DIR=(dir where NWC/PPS-Clouds+HRW outputs are to be located)
 Decompress and install the NWC/PPS distribution files, which successfully build the executable
- (PPS-HRW-v7P file), to be stored into the \$SAFNWC/bin directory such as defined in [AD.6].

3.2 RUNNING OF HIGH RESOLUTION WINDS (NWC/PPS-HRW)

Before running PPS-HRW-v7P executable, several steps have to be taken.

Then, NWC/PPS-Cloud products have to be run and remapped to the defined region, including the remapping of some additional files with:

ppsRemapNwp.py --nwp_file -area
ppsHrwPrepare --anglesfile -area

Finally, NWC/PPS-HRW product is to be run. Using NWC/PPS commands, this can be done with: ppsHrw.py --anglesfile -area

NWCSAF AEMET

where the PPS-HRW-v7P executable is related to the required parameters ("satellite angle input file(s)" and "model configuration file", to be found in the corresponding directories $SM_SUNSATANGLES_DIR$ and SM_CONFIG_DIR).

As already mentioned, the "satellite angle input files" (and all other needed input files) has to comply with the name and characteristics defined in Chapter 2.2.2.2 of this ATBD. Because of this, all these files need to correspond to reprojections to the selected static processing region, considering the reprojection process explained in [AD.6] and run before the running of NWC/PPS-HRW software.

Here, the NWC SAF user defines through the defined "satellite angle input files" the "later image" for the AMV calculation, and the NWC/PPS-HRW software defines by itself which is the "initial image" which fits best for the image calculation. For this, the following conditions are to be met among all "satellite angle input files" available in \$SM_SUNSATANGLES_DIR directory:

- The "initial image" time has to be before the "later image" time, inside POLAR_MAX_TIME_SEP and POLAR_MIN_TIME_SEP limits (120 minutes and 12 minutes).
- The percentage of image data available inside the static processing region for both "initial image" and "later image" (i.e. the real portion of the static processing region in which AMVs can be calculated for the defined slot) has to be over a configurable threshold (POLAR_MINIMUM_COMMON_SCANNING, with a default value of 10%).
- The following formula has to be a minimum for the selected "initial image":

WTimeSep*RatioOfTimeSeparation + WCommonScan(1-PercofPixelsCommonlyScanned)

- "WTimeSep", "WCommonScan" are the weights of both elements in the formula (which correspond to configurable parameters WEIGHT_OPTIMAL_TIME_SEPARATION and WEIGHT_MINIMUM_COMMON_SCANNING, both with a default value of 1),
- "RatioOfTimeSeparation" defines the ratio of the time separation of the defined "initial image" to the optimal time separation (which corresponds to configurable parameter POLAR_OPTIMAL_TIME_SEPARATION, with a default value of 24 minutes), with respect to the maximum possible time separation to the optimal time separation (related to POLAR_MAX_TIME_SEP for images before the "optimal time separation", and related to POLAR_MIN_TIME_SEP for images after the "optimal time separation"). Considering the value of the corresponding weight, the value of this element is between 0 (best possible values) and 1 (worst possible value).
- "PercofPixelsCommonlyScanned" defines the percentage of pixels inside the static processing region, commonly scanned by both "initial image" and "later image". Considering the value of the corresponding weight, the value of this element is between 0 (best possible values) and 1 (worst possible value).

The best option for the pair "initial image"/"later image" is so defined considering the time separation between images and the percentage of common scanning in the static processing region. This way the processing of NWC/PPS-HRW optimizes the calculation of AMVs with polar satellites, maximizing the quantity and quality of AMVs. If no "initial image" is defined as valid for the processing (because none of the "satellite angle input files" available in \$SM_SUNSATANGLES_DIR directory complies with both of the first two conditions defined here), only tracers are calculated for the defined image.

Other option is possible to run PPS-HRW-v7P executable through:

PPS-HRW-v7P <current_sunsatangles_NetCDF_file> <previous_sunsatangles_NetCDF_file> <model_conf_file>

Here, the NWC SAF user decides through both "satellite angle input files" the "later image" and the "initial image" for the AMV calculation. If both files are the same one, only tracers are calculated for that defined image.

		User Manual for the Wind	Code:	NWC/CDOP3/PPS/AEMET/SCI/UM/	Wind
CUMPTEAT.	ALANT	product processor of the	Issue: 0.1	Date: 12 October 20	021
- NWC SAE	ILME	NWC/PPS:	File: NWC-CDC	DP3-PPS-AEMET-SCI-UM-Wind_v0.1	
- NWC SAF	Agencia Estatal de Meteorología	Science Part	Page:		46/67

Considering this, *Figures 1 to 3* summarise how the tasks to generate the High Resolution Winds (NWC/PPS-HRW) are performed by the PPS-HRW-v7P executable:

Figure 1: NWC/PPS-HRW implementation: Part 1, Preprocessing and AMV computation

NWCSAF AEMet

Code:

(To Tracers(t) computation) Figure 2: NWC/PPS-HRW implementation: Part 2, AMV quality and selection

Figure 3: NWC/PPS-HRW implementation: Part 3, Tracer computation and writing of output files

3.3 DOCUMENTATION OF HIGH RESOLUTION WINDS (NWC/PPS-HRW)

In NWC/PPS-HRW, a detailed description of the whole algorithm, involved interfaces and data types, is provided through comments included within the code of NWC/PPS-HRW v7.P software.

Every single step throughout all functions of NWC/PPS-HRW algorithm has been commented in detail, so that any AMV developer can know in detail all the process of the algorithm, having a look to the corresponding C/Fortran functions.

For a quicker reference, a "Diagram tree" of all functions of NWC/PPS-HRW algorithm is also provided in the "Algorithm Theoretical Basis Document for the Wind product processor of the NWC/GEO" document [AD.14]. This "Diagram tree" allows NWC SAF users to quickly know at a glance how it works.

LIST OF ERRORS FOR HIGH RESOLUTION WINDS (NWC/PPS-HRW) 3.4

The following Table 12 shows the whole list of errors and warnings that can appear during the running of NWC/PPS-HRW software, the reasons causing the errors and warnings, and the way the NWC SAF user can try to solve them. In any case, if the errors or warnings persist, the NWC SAF Helpdesk should be contacted.

Error (E) or Warning (W)	Message	Reason	R ecovery action
E - 150	"Error: Environment variable <variable> has not been defined; Update for correct processing"</variable>	Some environment variable has to be defined for correct processing.	Update the value of corresponding environment variable through command "export" in the terminal or in the working "profile" file
E - 151	"Usage of PPS-HRW-v7P executable: or"	Input parameters are incorrect	Check instructions to start the run of NWC/PPS-HRW software in chapter 2.3.7.2 of this document
E - 152	"Error allocating memory for tracers"	Unable to allocate required memory for "tracer" struct	
E - 153	"Error allocating memory for tracer_wind struct, relating tracers and AMVs"	Unable to allocate required memory for "tracer_wind" struct	There are memory problems to run
E - 154	"Error allocating memory for structs related to a wind_channel_info struct"	Unable to allocate required memory for "wind_channel_info" struct	NWC/PPS-HRW software in the defined region with the defined configuration and computer.
E - 155	"Error allocating memory for the NWP grids for each variable"	Unable to allocate required memory for NWP grids	Use a larger computer or a smaller configuration.
E - 156	"Error allocating memory for the Quality control Image correlation grid"	Unable to allocate required memory for Image Correlation Grids (Only used in NWC/GEO-HRW)	
E - 157	"Satellite data for current/previous slot do not include valid values for any pixel"	Satellite data are not valid	Verify if there is any problem with the satellite data used by NWC/PPS-HRW software
E - 158	"The defined satellite for the current slot is not correct, or does not belong to NOAA-15/20 or SNPP or METOP-A/C or EOS-1/2 series"	Satellite data are not related to a valid polar satellite series	Run NWC/PPS-HRW with any of the valid polar satellite series

Error (E) or Warning (W)	Message	Reason	Recovery action
E - 160	"The region/projection defined for both satellite images is different"	The region/projection defined for both satellite images is different	Verify that the region and projection used for the "initial image" and "later image" are similar
E - 161	"Error reading Parameters from Satellite configuration file"	Error after NwcCFReadSat function (Only used in NWC/GEO-HRW)	Verify that the file \$SM_CONFIG_DIR/sat_conf_file used for running NWC/PPS-HRW software is correct
E - 162	"Error in date format (%s). Required format: YYYYMMDDT hhmmssZ"	Error after NwcTimeSetStr function (Only used in NWC/GEO-HRW)	Verify that the date format used for running NWC/PPS-HRW software is correct
E - 163	"Error reading Parameters from the HRW configuration file (model_conf_file)"	Error after hrw_ReadData function	Verify that the file \$SM_CONFIG_DIR/model_conf_file used for running NWC/PPS-HRW software is correct
E - 164	"Error reading Pressure levels from the NWP configuration file"	Error after NwcNwpReadPLevel function	Verify that the file \$SM_CONFIG_DIR/nwp_conf_file used for running NWC/PPS-HRW software is correct
E - 165	"Unable to initialize the NWP profiles"	Error after NwcNwpInitProfile function	Verify that the files \$SM_CONFIG_DIR/nwp_conf_file, \$SM_CONFIG_DIR/model_conf_file used for running NWC/PPS-HRW software are correct
E - 166	"NWP temperature/ surface pressure data cannot be read".	AMVs cannot be calculated because NWP data could not be read	Verify that NWP Surface pressure data and NWP temperature data for at least MIN_NWP_FOR_CALCULATION levels (with a default value of 4) have been provided for the running of NWC/PPS-HRW software in \$SM_NWPDATA_DIR directory

Error (E) or Warning (W)	Message	Reason	Recovery action
E - 170	"Error defining the previous slot for NWC/PPS-HRW algorithm"	The "initial image" for the running of NWC/PPS-HRW cannot be defined	
E - 171	"Error setting the Processing region and the Satellite info"	Error after NwcPPSRegionSet function	
E - 172	"Error getting latitude / longitude / sun angles for the High resolution region"	Error after hrw_GetAncillaryDataPPS function	
E - 173	"Error reading satellite data for current/previous slot"	Error after NwcSatInit or hrw_ReadSatelliteData functions	
E - 174	"Error reading tracers from previous slot"	Error after hrw_ReadTracers function	
E - 175	"Error reading Trajectories for the previous slot"	Error after hrw_ReadTrajectories function	All these errors are caused by the running of
E - 176	"Error during the AMV Tracking process"	Error after hrw_GetWinds function	NWC/PPS-HRW software, and cannot be solved by the NWC SAF user.
E - 177	"Error during the AMV Quality Control"	Error after hrw_Qc function	Nevertheless, as a whole, they should occur in less
E - 178	"Error writing Predecessor winds in NWCSAF tmp directory"	Error after hrw_WritePredWinds function	than a 0.5% of the cases. If the frequency is higher than that, please contact NWC SAF
E - 179	"Error writing Trajectories in NWCSAF tmp directory"	Error after hrw_WriteTrajectories function	Helpdesk.
E - 180	"Error calculating tracers for current slot"	Error after hrw_GetTracers function	
E - 181	"Error writing tracers in NWCSAF tmp directory"	Error after hrw_WriteTracers function	
E - 182	"Error writing the AMVs/Trajectories in the BUFR/NETCDF output file"	Error after hrw_EncodeBUFRNWCEC, hrw_EncodeBUFRIWWGEC, hrw_EncodeNetCDF function	
E - 183	"NWP data to be used cannot be defined; HRW AMVs cannot	Error after NwcPPSNWPDefine function	

 be calculated"

 Table 12: List of errors for NWC/PPS-HRW v7.P software

4. INPUTS AND CONFIGURABLE PARAMETERS

4.1 LIST OF INPUTS FOR HIGH RESOLUTION WINDS (NWC/PPS-HRW)

For NWC/PPS-HRW all input files share the same naming structure, in which <satid>=eos1/eos2/metopa/metob/metopc/noaa15/noaa16/noaa17/noaa18/noaa19/noaa20/npp is the polar satellite related to the scanning, <orbid>=nnnnn is a numeric code related to the satellite orbit, <tim1>=yyyymmddThhmmssZ is the satellite initial processing time, <tim2>=yyyymmddThhmmssZ is the satellite final processing time, and <regid> is the label identifying the static region used for the AMV calculation (for example, "europa" or "euron1").

Considering this, the full list of input files for the running of NWC/PPS-HRW software with polar satellites is as follows. All these input files have to be reprojected to the selected static processing region before the running of NWC/PPS-HRW, considering the reprojection process explained in [AD.6].

- The "satellite image input files", for the two images in which tracers are identified and tracked. The name of these "satellite image input files" is identified as S_NWC_<avhrr.viirs.modis>_<satid>_<orbid>_<tim1>_<tim2>_<regid>.nc where \$SM_IMAGER_DIR is the directory in which these files are located.
- The "satellite angle input files", for the two images in which tracers are identified and tracked. The name of the "satellite angle input files" is identified as S_NWC_sunsatangles_<satid>_<orbid>_<timl>_<tim2>_<regid>.nc, where \$SM_SUNSATANGLES_DIR is the directory in which these files are located.
- The "NWP input files" for the static region used for the AMV calculation. At least two "NWP forecast input files" related to a moment before and a moment after the images in which tracers are identified and tracked are needed for the processing. One "NWP analysis input file" up to one hour away from the moment in which AMVs are tracked is additionally needed to run Validation statistics against NWP analysis winds. The name of the "NWP input file" is identified as PPS_ECMWF_yyyymmddhhmm+fffHggM_<regid>.nc, where yyyymmddhhmm is the moment of the NWP run, fffHggM is the moment of the NWP forecast for the given file, and \$SM NWPDATA DIR is the directory in which these files are located.

Here, ECMWF NWP model is used as option for NWC/PPS software package, although other NWP models could be used by NWC SAF users for processing after some adaptation. A time step between NWP files of at most 6 hours (preferably a NWP time step of 1 hour), for a minimum of four (defined by configurable parameter MIN_NWP_FOR_CALCULATION) and preferably for as many as possible of the following pressure levels: 1000, 925, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, 10 hPa, should be provided for the following NWP variables:

- NWP Forecast Fields of temperatures ("t").
- NWP Forecast Fields of rectangular components of the wind ("u" and "v"), needed for the "Quality control forecast test", if the NWP wind guess has to be used for the definition of the "tracking area centre", or if Validation statistics are to be calculated by the NWC/PPS-HRW software itself considering as reference winds the NWP forecast winds.
- NWP Analysis Fields of rectangular components of the wind ("u" and "v"), needed if Validation statistics are to be calculated by the NWC/PPS-HRW software itself considering as reference winds the NWP analysis winds.
- NWP Forecast Fields of geopotential heights ("z"), needed if the "Orographic flag" is calculated.

- The "NWP/PPS-CT (Cloud type) output files" for the static region used for the AMV calculation, for the image in which tracers are calculated (in case the "Brightness temperature interpolation height assignment with Cloud products" is used) and/or for the image in which tracers are tracked (in case "CCC height assignment method" is used). The name of these "CT output files" is identified as S_NWC_CT_<satid>_<orbid>_<tim1>_<tim2>_<regid>.nc, where \$SM PRODUCT DIR is the directory where these files are located.
- The "NWP/PPS-CTTH (Cloud Top Temperature and Height) output file" for the static region used for the AMV calculation, for the image in which tracers are tracked, in case "CCC height assignment method" is used. The name of this "CTTH output file" is identified as S_NWC_CTTH_<satid>_<orbid>_<tim1>_<tim2>_<regid>.nc, where \$SM PRODUCT DIR is the directory in which this file is located.
- The "physiography file" for the static region used for the AMV calculation. The name of this "physiography file" is physiography.<regid>.nc and \$SM_STATIC_AUXILIARY_DIR is the directory in which this "Physiography file" is located.

Here, the "physiography file", the "satellite image input files", the "satellite angle input files" and the "NWC/PPS-CT Cloud Type output" files for the requested images, and the "NWP input files" with NWP temperature data with a minimum number of NWP levels (defined by configurable parameter MIN_NWP_FOR_CALCULATION, with a default value of 4) are actually needed for the AMV calculation. Remaining input data contribute to a higher number of AMVs and Trajectories and a better quality of the output data.

The option to calculate AMVs and Trajectories with climatological data instead of NWP data is not available, since the amount and quality of data provided would be significantly worse.

4.2 LIST OF CONFIGURABLE PARAMETERS FOR HIGH RESOLUTION WINDS (NWC/PPS-HRW)

The High Resolution Winds Model configuration file holds the configurable parameters needed for the running of NWC/PPS-HRW executable (PPS-HRW-v7P).. It must be located in \$SM_CONFIG_DIR directory. One reference Model Configuration File is included as example for the operational use with polar satellites: safnwc_HRW_POLAR.cfm.

A description of the configurable parameters is shown in the following table. They are basically equivalent to those used with NWC/GEO-HRW (for a common use of both applications). Only 5 additional parameters are defined for NWC/PPS-HRW which are not used by NWC/GEO-HRW (in green in the table). 11 parameters used by NWC/GEO-HRW are not used by NWC/PPS-HRW because the corresponding option does not exist in this version of NWC/PPS-HRW (in yellow in the table). A few parameters (for example the QI_THRESHOLD) have different values for each implementation.

Keyword	Description	Туре	Default Value (s)				
Identification parameters							
PGE_ID	NWC SAF Software Element identification. This keyword is optional, but it should not be changed by the user.	Chain of characters	PPS-HRW				
SAT_BANDS	A list of satellite bands that can be used to run for the calculation of AMVs and Trajectories with NWC/PPS-HRW software. This keyword is optional, but should not be changed. It defines the maximum value of bands for which AMVs can be calculated. Values defined in a list separated by commas.	Chain of characters	VIS06,IR108				
AMV_BANDS	A list of satellite bands really used for the calculation of AMVs and Trajectories with NWC/PPS-HRW software. As possible values, it can include any of the bands shown by the previous parameter, separated by commas.	Chain of characters	VIS06,IR108				
SLOT_GAP	Ordering number of the previous satellite image, from which tracers are to be considered for the AMV processing (Unused in NWC/PPS-HRW).	Integer	1				
MIXED_SCANNING	Flag to decide if the "Mixed method" is used in AMV processing (Unused in NWC/PPS-HRW).	Integer	0				
CDET	Flag to define if "Detailed AMVs and Trajectories" are calculated.	Integer	0				
	Polar specific identification parame	eters					
POLAR_OPTIMAL_ TIME SEPARATION	Optimal time separation in minutes between the "initial image" and the "later image"	Integer	24				
WEIGHT_OPTIMAL_ TIME_SEPARATION	Weight of the "Optimal time separation" in the formula deciding the "initial image" for a given "later image"	Integer	1				
POLAR_MINIMUM_ COMMON_SCANNING	Minimum common scanning in % between the "initial image" and the "later image"	Integer	10				
WEIGHT_MINIMUM_ COMMON_SCANNING	Weight of the "Minimum common scanning" in the formula deciding the "initial image" for a given "later image"	Integer	1				
OUTPUT_NAMESTYLE	Option to decide if NWC/PPS-HRW output files are provided with "GEO" or "PPS" name styles	Chain of characters	PPS				
	Output parameters						
BUFR_CENTRE_OR	Originating centre of the BUFR file, as defined in WMO Common Code Table C-1 ([RD.19]). It is to be modified with the code related to the corresponding centre (e.g. the default value 214 means Madrid).	Integer	214				
OUTPUT_FORMAT	 A list of output file formats, with several options possible. Elements in the list are to be separated by commas: NWC: AMV & Trajectories BUFR files, using the specific NWC SAF format. IWWG: AMV BUFR files, using the new IWWG BUFR format. 	Chain of characters	IWWG,NET				

- NE	T: AMV netCDF files						
	Output filtoring a gram store						
OL THRESHOLD	Quality Index threshold for the AMVs	Integer	80				
	Option to define if the Quality index threshold	integer					
QI_THRESHOLD_USEFORECAST	used in the wind output filtering includes the	Integer	1				
	Quality forecast test.						
OI IWWG VALUE CALCULATION	Option to define if	Integer	1				
	the Common Quality Index is calculated.						
QI_BEST_WIND_SELECTION	Criterion for Best wind selection (Values: 0/1, as defined in the ATBD document)	Integer	1				
	Flag to decide if Clear air AMVs calculated						
CLEARAIRWINDS	(Unused in NWC/PPS-HRW).	Integer	0				
CALCULATE_TRAJECTORIES	Flag to decide if Trajectories calculated.	Integer	1				
	Flag for a final filtering of AMVs based on:						
	- Their Height level (if > 0),						
FINALFILTERING	- Their Cloud type $(1I > 1)$, Their Quality spatial test	Integer	2				
	- Then Quality spatial test $(1.2 \text{ as invalid values if } > 2)$						
	(1,2) as invalid values if > 2 , 0,1,2 as invalid values if > 3).						
LISE TOPO	Flag for calculation of Orographic flag (if	Integer	2				
032_1010	positive), and for its AMV filtering (if $= 2$).	Integer	2				
MAXPRESSUREERROR	Maximum pressure error in the AMVs (hPa),	Integer	150				
	when 'CCC height assignment method' used.	U					
VERYLOWINER AREDAMVS	(at levels lower than 900 hPa)	Integer	1				
	are admitted in the AMV output files.	integer	-				
FINALCONTROLCHECK	Flag to decide the use of Final Control Check.	Integer	1				
CORREL ATIONMATRICES	(Formally unused in both NWC/GEO-HRW	Integer	0				
CORRELATIONMATRICES	and NWC/PPS-HRW algorithms).	integer	°				
	Working area description paramete	rc					
LAT MIN	working area aescription parameter	Integer	-90				
LAT MAX	Latitude and longitude borders (in degrees)	Integer	90				
LON MIN	for the processing region (Basic AMVs).	Integer	-180				
LON_MAX		Integer	180				
LAT_MIN_DET		Integer	-90				
LAT_MAX_DET	Latitude and longitude borders (in degrees)	Integer	90				
LON_MIN_DET	for the processing region (Detailed AMVs).	Integer	-180				
LON_MAX_DET		Integer	180				
EDAC DAV SCENE	Minimum fraction of area illuminated by the	Integer	0				
FRAC_DAT_SCENE	(in NWC/PPS-HRW, for VIS06 channel)	integer	0				
SUN ZEN THRES	Sun zenith angle threshold (degrees).	Integer	87				
SAT_ZEN_THRES	Satellite zenith angle threshold (degrees).	Integer	80				
	Iracer parameters						
	Flag defining if using an older slot for the "initial image" if the corresponding one						
USE OLDERSLOT FORTRACERS	is not available (Unused in NWC/PPS-HRW)	Integer	0				
	(Suggested by Yu-heng He,	integer					
	Hong Kong Observatory).						
MAX_TRACERS	Maximum number of tracers.	Integer	600000				
TRACERSIZE_VERYHIGH	Tracer line and column dimension in pixels,	Integer	24				
TRACERSIZE_HIGH	when respectively using satellite images	Integer	24				
TRACERSIZE_LOW	(NWC-PPS/HRW using low resolution only).	Integer	24				
	1 byte reflectance threshold for		100				
BRIGHTNESS_THR_VIS	visible tracers.	Integer	120				
BRIGHTNESS THR OTHER	1 byte brightness temperature threshold for	Integer	240				
bRionniess_nik_oniek	infrared and water vapour tracers.	integer					
GVAL VIS	Minimum 1 byte reflectance	Integer	60				
_	Contrast for Visible tracers.	Ű					
GVAL_OTHER	contrast for infrared and water vapour tracers	Integer	48				
TRACERDISTANCE VERYHIGH	Nominal separation in pixels between tracers.	Integer	24				
TRACERDISTANCE_HIGH	when respectively using satellite images	Integer	12				
TRACERDISTANCE LOW	with very high, high and low resolution.	Integer	6				
	(NWC-PPS/HRW using low resolution only).	integer					
HIGHERDENSITY_	Option to decide the nominal ratio	Integer	2				
HIGHERDENSITY	tracers related to very low and low clouds	-					
LOWTRACERS_DET	(for Basic and Detailed tracers)	Integer	2				

Tracking parameters						
TRACKING	Tracking method. Possible values: LP: Euclidean difference CC: Cross correlation.	Chain of characters	сс			
DEFINECONTRIBUTIONS	Flag to decide if "CCC height assignment" is to be used (requires also TRACKING=CC).	Integer	1			
DEFPOSCONTRIBUTIONS	Flag to decide if the position of the AMV in the target is relocated to the position of maximum correlation contribution defined by "CCC height assignment" (requires also TRACKING=CC and DEFINECONTRIBUTIONS=1).	Integer	1			
USE_CLOUDTYPE	Flag to decide if - The Tracer cloud type is calculated by the old "Brightness temperature interpolation height assignment method" (if positive), - And if the Tracer cloud type is taken into account for the calculation of the Tracer temperature (if = 2).	Integer	2			
USE_MICROPHYSICS	Flag to decide if Microphysics correction is to be calculated to "CCC height assignment" (Unused in NWC/PPS-HRW).	Integer	0			
MIN_CORRELATION	Minimum correlation acceptable (if TRACKING=CC).	Integer	80			
WIND_GUESS	Flag to decide if the Wind guess is used for the definition of the Tracking area.	Integer	1			
MINSPEED_DETECTION	When the wind guess is not used in the definition of the Tracking area, displacement in any direction (in km/h) which the process is at least able to detect for AMVs/Trajectories. When the wind guess is used in the definition of the Tracking area, difference in speed with respect to the one of the NWP wind guess (in km/h) which the process is at least able to detect for the AMVs/Trajectories.	Integer	72			
USE_SUBPIXELTRACKING	Flag to decide if the subpixel tracking is used.	Integer	1			
USE_PARALLAXCORRECTION	Flag to decide if the parallax correction is applied to the latitude/longitude of the tracer and tracking centre, for the calculation of the wind, considering the AMV height in metres (Unused in NWC/PPS-HRW).	Integer	0			
	NWP validation parameters					
NWPVAL_STATISTICS	 Flag to decide if Validation statistics against NWP model winds are to be calculated. Possible values: 1: Statistics provided for all layers and satellite channels together. 2: Statistics provided for all layers together and each satellite channel separately. 3: Statistics provided for each layer separately and all satellite channels together. 4: Statistics provided for each layer and satellite channel separately. 	Integer	4			
NWPVAL_ANALYSIS	Flag to decide if the Validation statistics are to be computed against NWP analysis winds.	Integer	0			
NWPVAL_NWPDIFFERENCE	Flag to decide if Vector difference between each AMV and the related NWP model wind is to be written in the output files.	Integer	1			
NWPVAL_NWPBESTFITLEVEL	Flag to decide if the NWP model wind at the best fit pressure level for each AMV is to be written in the output files.	Integer	1			

NWP parameters						
MIN_NWP_FOR_CALCULATION	Minimum number of NWP levels needed for NWC/PPS-HRW processing.	Integer	4			
NWP_PARAM	NWP parameters requested by NWC/GEO-HRW algorithm: * NWP_T: Temperature at several levels (K)	Chain of characters	NWP_T <mark>1 NEI</mark>			
NWP_PARAM	* NWP_UW: Wind velocity at several levels, u component (m/s) * NWP_VW: Wind velocity at several levels, v component (m/s) * NWP_GEOP: Geopotential height at several levels (m)	Chain of characters	NWP_UW 1 NEI			
NWP_PARAM		Chain of characters	NWP_VW 1 NEI			
NWP_PARAM	Sampling rate used in NWC/GEO-HRW: 1 Interpolation method used in NWC/GEO-HRW: NEI (neighbour)	Chain of characters	NWP_GEOP 1 NEI			

Table 13: NWC/PPS-HRW v7.P Model Configuration File Description

The "NWC/PPS-HRW Model configuration file" is an ASCII file, so further modifications can be easily performed with a text editor.

For a given NWC/PPS-HRW Model configuration file, the running time depends basically on two parameters:

- The size in pixels of the reprojected image used for the processing (a larger size means a longer processing time).
- The size in kilometres of the pixels in this reprojected image (a smaller size means the use of larger "tracking areas" to look for the tracers in the "later image", and due to this, a longer processing time).

If the user has the need to reduce the NWC/PPS-HRW running time, especially when working with a slow platform, several options can be recommended:

- To increase the distance between tracers (with larger values of TRACERDISTANCE_LOW parameter), or the ratio in the distance between high/medium tracers with respect to the distance between low tracers (with larger values of HIGHERDENSITY_LOWTRACERS and HIGHERDENSITY_LOWTRACERS_DET parameters).
- To reduce the size of the "tracking area", with smaller values of MINSPEED_DETECTION parameter. However, care is needed here so that NWC/PPS-HRW software keeps on having the option to calculate all AMVs, including those which are significantly different to the NWP wind (when the wind guess is used), or those which are significantly quick (when the wind guess is not used).

5. VALIDATION OF HIGH RESOLUTION WINDS (NWC/PPS-HRW)

NWC SAF/High Resolution Winds software is validated for t its NWC/GEO-HRW implementation since the year 2018 considering both Radiosounding winds and NWP analysis winds as reference winds. This procedure has also been used in the validation of this first implementation of NWC/PPS-HRW software.

The default validation statistics against Radiosounding winds and NWP analysis winds for NWC/PPS-HRW Basic AMVs, are shown here as a summary. The criteria defined at the Third International Winds Workshop (Ascona, Switzerland, 1996) for the comparison of satellite winds with Radiosounding winds have been followed here, as for all versions of NWC/GEO-HRW algorithm. Additional Validation statistics can be obtained in the "Scientific and Validation Report" for NWC/PPS-HRW [AD.12].

The statistical parameters used in the process of validation are:

- NC: "Number of collocations" between NWC/PPS-HRW AMVs and the reference winds. •
- SPD: "Mean speed of the reference winds in m/s". •
- NBIAS: "Normalized bias".
- NMVD: "Normalized mean vector difference". •
- NRMSVD: "Normalized root mean square vector difference". •

Information about how these validation statistical parameters can be calculated can be obtained in the same "Scientific and Validation Report" for NWC/PPS-HRW [AD.12].

The same dataset of AMVs is validated for all satellite series against both reference winds, to detect differences in the validation against these both references.

60/67

5.1 VALIDATION OF NWC/PPS-HRW FOR POLAR SATELLITES

For the validation of this first NWC//PPS-HRW version with polar satellites, a validation period of three months (February 2020-April 2020) has been defined. Here, all polar satellite scannings over two reprojected static regions ("EURON1 - Scandinavia", shown in Figure 17, and "EUROPA", shown in Figure 19), have been processed between 09:00Z and 13:00Z for 88 days inside this validation period, and all AMVs for all related slots between 11:00Z and 13:00Z have been validated against both Radiosounding winds and NWP analysis winds at 12:00Z.

The configuration considers the conditions defined in the default "model configuration file" \$SM CONFIG DIR/safnwc HRW POLAR.cfm. For this process, NWC/PPS-CMA/CT/CTTH in both reprojected validation regions have to be produced before the running of NWC/PPS-HRW.

Comparing the statistics for NWC/PPS-HRW against Radiosounding winds and ECMWF NWP analysis in Table 14 (considering all layers together) and in Table 16 (considering three layers separately), it can be seen that the NMVD and NRMSVD parameters are significantly smaller (around a 30% smaller) against NWP analysis winds. A conclusion can be taken here, that the general scale and behaviour of AMV winds is more similar to that of NWP analysis winds than to that of Radiosounding winds. This behaviour can also be observed in the statistics for the latest version of NWC/GEO-HRW, shown as reference in Table 15 (considering all layers together) and in Table 17 (considering three layers separately). For NWC/GEO-HRW, AMV statistics for MSG satellite for IR108 channel, for HRVIS channel (only visible channel for which statistics are calculated for all layers), and for all channels together are shown for the comparison.

Considering differences in NWC/PPS-HRW for VIS06 and IR108 channel, statistics for IR108 AMVs are slightly better (with NMVD and NRMSVD values up to a 10% better for IR108 channel in region "EURON1"). This could in general be explained by the generally low solar elevation in these Northern regions throughout the used validation period (around the Spring Equinox), which limits the illumination conditions in the visible channels. However, it is also to be remarked that the differences in the AMV statistics for both VIS06 and IR108 channels are not so significant in spite of this.

Considering the differences in the AMVs for regions "EUROPA" and "EURON1", using respectively pixels of 5 km size and 1 km size, in general AMVs for region "EURON1" have smaller NBIAS values, which can be related to the fact of using smaller tracers due to smaller pixel sizes. Instead, NMVD and NRMSVD values are slightly higher for region "EURON1". Both results are general results for all AMV calculation processes when using smaller tracers.

Comparing the distribution of AMVs in the different layers, NWC/PPS-HRW shows a value of 69%/20%/11% for the High/Medium/Low layer in the region "EUROPA" and a value of 52%/25%/23% in the region "EURON1". Meanwhile, NWC/GEO-HRW shows also a value of 52%/25%/23% in the "European and Mediterranean" region, considering all AMVs for all possible channels. Some improvement could be needed in future NWC/PPS-HRW versions to increase a bit the distribution of low level AMVs in the region "EUROPA", to better characterize the behaviour of the wind in the different levels of the troposphere.

Considering the different layers, the validation parameters are progressively higher for the high layer, medium layer and low layer, as for NWC/GEO-HRW algorithm. Comparing the statistics of NWC/PPS-HRW and NWC/GEO-HRW (respectively in Tables 14/16 and Tables 15/17), NWC/PPS-HRW shows cases in which the values of NMVD and NRMSVD parameters can be up to a 20% higher. In spite of this, while for NWC/GEO-HRW algorithm the Product Requirement Table "Optimal accuracy" is reached in the High layer (with a value of 0.35 against Radiosounding winds), and the Product Requirement Table "Target accuracy" is reached in the Medium and Low layer (with values respectively of 0.50 and 0.56 against Radiosounding winds), in comparison, for this first version of NWC/PPS-HRW algorithm, the Product Requirement Table "Target accuracy" is reached for both validation regions for all layers, and the Product Requirement Table "Optimal accuracy" is even reached in the Low layer for region "EURON1" (with a value of 0.45 against Radiosounding winds). Considering this, NWC/PPS-HRW outputs can be perfectly used by NWC SAF users the same

ALIAT	ALIAT	User Manual for the Wind product processor of the	Code: Issue: 0.1	NWC/CDOP3/PPS/AEMET/SCI/UM/ Date: 12 October 2/	Wind 021
NWC SAF	Agencia Estatal de Meteorología	NWC/PPS: Science Part	File: NWC-CDC Page:)P3-PPS-AEMET-SCI-UM-Wind_v0.1	61/67

way they are using NWC/GEO-HRW outputs, in spite of being defined only as a "demonstrational version".

	"EURON1-Scandinavia" region					"EUROPA" region		
NWC/PPS-HRWv7.P AMVs		IR108/	All			IR108/	All	
(Feb 2020-Apr 2020)	VIS06	IR110	AMVs		VIS06	IR110	AMVs	
NC	199190	294099	493289		136348	508408	644756	
SPD [m/s]	21.75	25.00	23.69		20.25	23.76	23.02	
NBIAS (ALL LAYERS)	+0.00	+0.02	+0.01		-0.08	-0.06	-0.06	
NMVD (100-1000 hPa)	0.34	0.32	0.33		0.31	0.32	0.32	
NRMSVD	0.44	0.40	0.42		0.39	0.39	0.39	
NC	199190	294099	493289		136348	508408	644756	
SPD [m/s]	21.70	25.08	23.71		19.88	23.77	22.95	
NBIAS (ALL LAYERS)	+0.00	+0.02	+0.01		-0.06	-0.06	-0.06	
NMVD (100-1000 hPa)	0.26	0.25	0.25		0.24	0.23	0.23	
NDMQVD	0 35	0 31	0 33		0 31	0 29	0 30	

Table 14: Validation parameters for NWC/PPS-HRW v7.P AMVs, considering all layers together, against Radiosounding winds in light green and against ECMWF NWP analysis winds in dark green. (Basic AMVs in nominal configuration; Feb 2020-Apr 2020 between 11:00 and 13:00 UTC; Polar satellites with AVHRR/3, VIIRS and MODIS radiometers).

Statistics for region "EURON1 - Scandinavia" on the left side; region "EUROPA" on the right side.

	European/Mediterranean region					
NWC/GEO-HRW v6.1 AMVs			All			
(Jul 2010-Jun 2020, MSG sat.)	HRVIS	IR108	AMVs			
NC	67288	226314	1097907			
SPD [m/s]	12.87	17.50	17.23			
NBIAS (ALL LAYERS)	-0.03	-0.08	-0.07			
NMVD (100-1000 hPa)	0.35	0.30	0.32			
NRMSVD	0.42	0.37	0.39			
NC	67288	226314	1097907			
SPD [m/s]	12.72	17.19	16.91			
NBIAS (ALL LAYERS)	-0.02	-0.07	-0.05			
NMVD (100-1000 hPa)	0.22	0.20	0.22			
NRMSVD	0.28	0.25	0.27			

Table 15: Validation parameters for NWC/GEO-HRW v6.1 AMVs (latest NWC/GEO-HRW version),
considering all layers together, against Radiosounding winds in light blue
and against ECMWF NWP analysis winds in dark blue.
(Basic AMVs in nominal configuration; Jul 2009-Jun 2010 at 12:00 UTC; MSG-2 satellite;

"European and Mediterranean" region).

	"EURON1-Scandinavia" region				"EUROPA" region			
NWC/PPS-HRWv7.P AMVs		IR108/	All			IR108/	All	
(Feb 2020-Apr 2020)	VIS06	IR110	AMVs		VIS06	IR110	AMVs	
NC	82514	172397	254911		71182	373464	444646	
SPD [m/s]	32.80	30.29	31.10		28.10	27.22	27.36	
NBIAS (HIGH LAYER)	+0.00	+0.02	+0.01		-0.09	-0.06	-0.07	
NMVD (100-400 hPa)	0.31	0.31	0.31		0.28	0.30	0.30	
NRMSVD	0.38	0.37	0.38		0.34	0.36	0.36	
NC	43130	82440	125570		29585	96716	126301	
SPD [m/s]	19.44	19.39	19.41		14.90	15.96	15.71	
NBIAS (MEDIUM LAYER)	-0.00	+0.02	+0.01		-0.06	-0.03	-0.04	
NMVD (400-700 hPa)	0.38	0.38	0.38		0.37	0.42	0.41	
NRMSVD	0.49	0.46	0.47		0.46	0.51	0.50	
NC	73546	39262	112808		35581	38228	73809	
SPD [m/s]	10.72	13.55	11.70		8.99	9.73	9.37	
NBIAS (LOW LAYER)	+0.00	-0.01	-0.00		-0.02	+0.02	-0.00	
NMVD (700-1000 hPa)	0.38	0.33	0.36		0.43	0.44	0.44	
NRMSVD	0.45	0.39	0.43		0.50	0.51	0.51	
NC	82514	172397	254911		71182	373464	444646	
SPD [m/s]	32.51	30.28	31.00		27.28	27.11	27.13	
NBIAS (HIGH LAYER)	+0.01	+0.02	+0.02		-0.07	-0.06	-0.06	
NMVD (100-400 hPa)	0.25	0.24	0.24		0.23	0.23	0.23	
NRMSVD	0.31	0.29	0.30		0.28	0.28	0.28	
NC	43130	82440	125570		29585	96716	126301	
SPD [m/s]	19.64	19.73	19.70		14.75	16.12	15.80	
NBIAS (MEDIUM LAYER)	-0.01	+0.01	+0.00		-0.05	-0.04	-0.05	
NMVD (400-700 hPa)	0.28	0.28	0.28		0.27	0.27	0.27	
NRMSVD	0.36	0.35	0.35		0.33	0.33	0.33	
NC	73546	39262	112808		35581	38228	73809	
SPD [m/s]	10.78	13.45	11.71		9.35	10.48	9.93	
NBIAS (LOW LAYER)	+0.00	-0.00	-0.00		-0.06	-0.05	-0.05	
NMVD (700-1000 hPa)	0.25	0.23	0.25		0.28	0.25	0.27	
NRMSVD	0.31	0.28	0.30		0.33	0.29	0.31	

Table 16: Validation parameters for NWC/PPS-HRW v7.P AMVs, considering respectively the high, medium and low layer,

against Radiosounding winds in light green and against ECMWF NWP analysis winds in dark green. (Basic AMVs in nominal configuration; Feb 2020-Apr 2020 between 11:00 and 13:00 UTC;

Polar satellites with AVHRR/3, VIIRS and MODIS radiometers).

Statistics for region "EURON1 - Scandinavia" on the left side; region "EUROPA" on the right side.

	European/Mediterranean region					
NWC/GEO-HRW v6.1 AMVs			All			
(Jul 2010-Jun 2020, MSG sat.)	HRVIS	IR108	AMVs			
NC	15919	119091	566718			
SPD [m/s]	21.13	21.85	22.19			
NBIAS (HIGH LAYER)	-0.03	-0.07	-0.05			
NMVD (100-400 hPa)	0.25	0.26	0.26			
NRMSVD	0.30	0.32	0.32			
NC	15447	65544	276959			
SPD [m/s]	12.88	14.29	13.91			
NBIAS (MEDIUM LAYER)	-0.05	-0.09	-0.08			
NMVD (400-700 hPa)	0.35	0.35	0.36			
NRMSVD	0.42	0.43	0.44			
NC	35922	41679	254230			
SPD [m/s]	9.21	10.11	9.79			
NBIAS (LOW LAYER)	-0.02	-0.11	-0.09			
NMVD (700-1000 hPa)	0.45	0.40	0.42			
NRMSVD	0.53	0.48	0.50			
NC	15919	119091	566718			
SPD [m/s]	20.87	21.54	21.83			
NBIAS (HIGH LAYER)	-0.01	-0.06	-0.04			
NMVD (100-400 hPa)	0.16	0.17	0.17			
NRMSVD	0.19	0.22	0.21			
NC	15447	65544	276959			
SPD [m/s]	12.58	13.95	13.56			
NBIAS (MEDIUM LAYER)	-0.03	-0.07	-0.05			
NMVD (400-700 hPa)	0.25	0.25	0.26			
NRMSVD	0.31	0.31	0.33			
NC	35922	41679	254230			
SPD [m/s]	9.17	9.86	9.58			
NBIAS (LOW LAYER)	-0.01	-0.09	-0.07			
NMVD (700-1000 hPa)	0.28	0.27	0.28			
NRMSVD	0 34	0 33	0 34			

 Table 17: Validation parameters for NWC/GEO-HRW v6.1 AMVs (latest NWC/GEO-HRW version), considering respectively the high, medium and low layer,

against Radiosounding winds in light blue and against ECMWF NWP analysis winds in dark blue. (Basic AMVs in nominal configuration; Jul 2009-Jun 2010 at 12:00 UTC; MSG-2 satellite; "European and Mediterranean" region).

6. ASSUMPTIONS AND LIMITATIONS IN NWC/PPS-HRW

The main circumstance that has to be taken into account when using NWC/PPS-High Resolution Winds software is the variability with time of the amount of available AMV and Trajectory data. This is related to the evolution with time of cloudy areas in the processing region (as in NWC/GEO-HRW), but additionally also related to the facts that the portion of image scanned at the same time by the "initial image" and the "later image" is very variable for each pair of images, and that the time interval between this pair of images is also very variable (with generally smaller amounts of AMVs for the longest time intervals).

The deformation of the images caused by the reprojection process to the static working region can also have an impact, especially when the satellite zenith angles for a pixel are very different in the "initial image" and the "later image", causing a reduction in the amount of calculated AMVs.

Due to this, for a region which is well observed by a geostationary satellite, the usability of NWC/GEO-HRW AMVs can be much better than the one for NWC/PPS-HRW AMVs, due to the better continuity of AMV observations. However, for regions which are not well observed by a geostationary satellite, and for which there cannot be NWC/GEO-HRW AMVs (for example in Europe for Iceland or Central and Northern parts of Scandinavia), NWC/PPS-HRW AMVs compensate the lack of AMVs from the geostationary version.

Considering this, and taking into account that the latest version of NWC/GEO-HRW (v6.1) is able to calculate AMVs throughout all areas of the world with MSG satellites (in Europe, Africa and Western Asia with IODC service), with Himawari-8/9 satellites (in Eastern Asia and the Western Pacific), and with GOES-16 satellite (in the Americas), NWC/PPS-HRW adds the option to calculate AMVs in Arctic and Antarctic areas, so adding more options to calculate AMVs with the same AMV algorithm throughout all the world (which is rather uncommon).

An issue remains in the Eastern Pacific areas, for which NWC/GEO software package is not operational with GOES-17 satellite (due to the problems observed in the cooling system of its ABI imager and the instabilities in its image output). A solution for this issue is expected for 2022 with the launch and normal operation of GOES-T satellite, allowing to calculate AMVs with NWC SAF/High Resolution Winds algorithm in all areas of the world, which can be important for example for NWP assimilation in global models or for climate studies.

Considering this first version of NWC/PPS-HRW software, some elements remain to be included in the processing for a total equivalence with NWC/GEO-HRW software (for example, the calculation of Cloudy and Clear air AMVs from water vapour channels, or the inclusion of NWC/PPS-CMIC outputs for the "Microphysics correction in CCC method height assignment"), but these elements are expected to be included in a second version of NWC/PPS-HRW software in around one year time.

Considering the validation of NWC/PPS-HRW, comparing its statistics with those for NWC/GEO-HRW software, it has been seen that the values of NMVD and NRMSVD parameters can be up to a 20% higher. In spite of this, while for NWC/GEO-HRW software the Product Requirement Table "Optimal accuracy" is reached in the High layer and the "Target accuracy" is reached in the Medium and Low layer, for this first version of NWC/PPS-HRW software, the Product Requirement Table "Target accuracy" is still reached for all layers. Considering this, NWC/PPS-HRW outputs can be perfectly used by NWC SAF users the same way they are using NWC/GEO-HRW outputs, in spite of being defined only as a "demonstrational version". About the AMVs calculated by NWC/PPS-HRW, the main source of errors is related to inconsistencies between the NWP model used and the true atmosphere. This is especially important:

product processor of the

NWC/PPS:

Science Part

NWCSAF AEMet

In the definition of the "tracking area" and in the Quality control, related to inconsistencies in the NWP wind data. On the one hand, tracers may not be found in areas where the displacement is different to the one defined by the forecast. On the other hand, the errors in the NWP forecast winds can cause the AMVs to have a worse forecast QI than the one they should, and because of this some good AMVs might be rejected.

The first problem is solved not using the NWP wind guess (with WIND_GUESS = 0). However, the long running time this can cause in NWC/PPS-HRW software, especially with high resolution regions and long time differences between the "initial image" and the "later image", forces to be careful with the implementation of this change in operational environments.

The second problem is solved using the "Quality index without forecast" in the operation of NWC/PPS-HRW software (implemented with OI THRESHOLD USEFORECAST = 0), which avoids the influence of the NWP model in the Quality of the AMVs (nevertheless, this option has not been considered as the default one).

In the height assignment (in general the main remaining challenge that scientists are currently facing with AMV extraction). If the "HRW Brightness temperature interpolation height assignment" is used, small errors in the temperature profile can cause important errors in the heights assigned to the tracers. Besides, the assumption is taken that the temperature is supposed to diminish constantly with higher levels throughout the atmosphere. Due to this, problems in the level assignment appear when a temperature inversion is present. This problem is solved using the "CCC height assignment method" (the default option), in which the thermal inversion problem is solved by NWC/GEO-CTTH product output data.

In any case, the use of the NWP model is considered to be mandatory for the AMV height assignment (directly through the "Brightness temperature interpolation height assignment", or indirectly through the NWC/GEO-CTTH Cloud top pressure output related to "CCC height assignment").

Considering the calculation of Trajectories through the successive tracking of the same tracer in consecutive images, the most important limitation is that the number of consecutive passes of the different polar satellites over the same tracer can be very limited. Due to this, after three consecutive slots only around a 10% of the tracers persist in the "Basic scale", around a 5% of the tracers persist in the "Detailed scale". This is an issue that users should also have into account when using the Trajectories calculated by NWC/PPS-HRW software.

Other elements also occurring in NWC/GEO-HRW software for the definition of the Trajectories, like the persistence in time of the tracers (especially when these tracers are small), or the impact of the different meteorological situations (in which the temporal change of the atmospheric structures is quicker or slower), can have also an impact in the calculation of Trajectories with NWC/PPS-HRW, although their effect is much smaller than the one mentioned in the previous paragraph.

7. VISUALISATION EXAMPLES OF NWC/PPS-HRW

Real time graphic displays of NWC/PPS-HRW software outputs, generated by the NWC/PPS Reference System with polar satellite series, are available at the NWC SAF Helpdesk website (http://www.nwcsaf.org). Following figures show typical displays of NWC/PPS-HRW v7.P in the regions used for validation, ("EURON1 - Scandinavia" and "EUROPA"), considering the default configuration for polar satellites, but with AMVs calculated for for both AMV scales ("Basic scale" and "Detailed scale"). For the region "EURON1 - Scandinavia" in Figures 4 and 5, and for the region "EUROPA" in Figures 6 and 7.

Figure 4: NWC/PPS-High Resolution Winds "Basic AMV" output example in the region "EURON1 - Scandinavia" (3 March 2020 12:40:44 UTC for SNPP satellite, with tracers calculated at 12:20:09 UTC for EOS-2 satellite), considering conditions defined in \$SM CONFIG DIR/safnwc HRW POLAR.cfm model configuration file. Colour coding based on the AMV pressure level

Figure 5: NWC/PPS-High Resolution Winds "Detailed AMV" output example in the region "EURON1 - Scandinavia" (3 March 2020 12:40:44 UTC for SNPP satellite, with tracers calculated at 12:20:09 UTC for EOS-2 satellite), considering conditions defined in \$SM CONFIG DIR/safnwc HRW POLAR.cfm model configuration file and configurable parameter CDET=1. Colour coding based on the AMV pressure level

Figure 6: NWC/PPS-High Resolution Winds "Basic AMV" output example in the region "EUROPA" (3 March 2020 12:40:44 UTC for SNPP satellite, with tracers calculated at 12:20:09 UTC for EOS-2 satellite), considering conditions defined in \$SM_CONFIG_DIR/safnwc_HRW_POLAR.cfm model configuration file. Colour coding based on the AMV pressure level

Figure 7: NWC/PPS-High Resolution Winds "Detailed AMV" output example in the region "EUROPA" (3 March 2020 12:40:44 UTC for SNPP satellite, with tracers calculated at 12:20:09 UTC for EOS-2 satellite), considering conditions defined in \$SM_CONFIG_DIR/safnwc_HRW_POLAR.cfm model configuration file and configurable parameter CDET=1. Colour coding based on the AMV pressure level