
CM SAF 
NWC SAF 

 
Algorithm Theoretical Basis Document 

for Cloud Probability product 

 
Doc. No.:
 NWC/CDOP3/PPS/SCI/ATBD/CloudProbability 
Issue: 2.0 
Date: 26.04.2021 

 

 

EUMETSAT Satellite Application Facility on Climate Monitoring 
 

 

 

 

   
 

 

 

 

 

Algorithm Theoretical Basis Document for the Cloud Probability 
product of the NWC/PPS package 

 

NWC/CDOP3/PPS/SMHI/SCI/ATBD/CloudProbability, Issue 2, Rev. 0 

 

 

Applicable to SAFNWC/PPS version 2021 
Applicable to the following PGEs: 

Acronym Product ID Product name Version 

number 

CMa-prob NWC-154 Cloud Probability 1.1 

 

 

Prepared by Swedish Meteorological and Hydrological Institute (SMHI) 
 

  

Reference Number: NWC/CDOP3/PPS/SMHI/SCI/ATBD/CloudProbability 

Issue/Revision Index: 2.0 

Date: 26.04.2021 



CM SAF 
NWC SAF 

 
Algorithm Theoretical Basis Document 

for Cloud Probability product 

 
Doc. No.:
 NWC/CDOP3/PPS/SCI/ATBD/CloudProbability 
Issue: 2.0 
Date: 26.04.2021 

 

2 

REPORT SIGNATURE TABLE 

Function Name Signature Date 

Prepared by SMHI 

 

26 April 2021 

Reviewed by SAFNWC Project Team 

EUMETSAT 
 

 

 

 

23 April 2021 

Authorised by Anke Thoss, SMHI      
SAFNWC PPS Manager 

 

26 April 2021  

 

 

Document Signature Table 

 

 Name Function Signature Date 

Authors Karl-Göran Karlsson 

Erik Johansson 

Salomon Eliasson 

Nina Håkansson 

Sara Hörnquist 

Joseph Sedlar 

CM SAF scientists  26/04/2021 

Editor Rainer Hollmann Science Coordinator   

Approval Rainer Hollmann Science Coordinator   

Release Rainer Hollmann Project Manager   

 

 

Distribution List 

 

Internal Distribution 

Name No. Copies 

DWD Archive 1 

CM SAF Team 1 

 



CM SAF 
NWC SAF 

 
Algorithm Theoretical Basis Document 

for Cloud Probability product 

 
Doc. No.:
 NWC/CDOP3/PPS/SCI/ATBD/CloudProbability 
Issue: 2.0 
Date: 26.04.2021 

 

3 

 

External Distribution 

Company Name No. Copies 

PUBLIC 1 

 

 

 

 

Document Change Record 

 

Issue/ 

Revision 

Date DCN No. Changed Pages/Paragraphs 

1.0 24/04/2015 SAF/CM/SMHI/ATBD/G

AC/CMA-prob 

Initial version, submitted for PCR 2.2 

1.1 27/05/2016 SAF/CM/SMHI/ATBD/G

AC/PBCM 

Version submitted for DRR 2.2 

1.2 02/08/2016 SAF/CM/SMHI/ATBD/G

AC/PBCM 

Updated version for DRR 2.2 Close-Out 

1.3 20/12/2016 SAF/CM/SMHI/ATBD/G

AC/PBCM 

Version submitted for NWC SAF PPS 2018 PCR 

1.4 17/10/2018 SAF/CM/SMHI/ATBD/G

AC/PBCM 

Version prepared for NWC SAF PPS 2018 ORR 

(equivalent to document 

NWC/CDOP3/PPS/SMHI/SCI/ATBD/1c) 

1.0d 17/10/2018 NWC/CDOP3/PPS/SMHI

/SCI/ATBD/CloudProbabi

lity 

Same as previous issue but transferred from CM 

SAF versions to NWC SAF  

1.0 13/12/2018 NWC/CDOP3/PPS/SMHI

/SCI/ATBD/CloudProbabi

lity 

Updates after NWCSAF/PPS v2018 DRR. 

RID-001, 002, 003, 004, 005, 007, 008, 010 

Other changes: 

Added a comment on no-data in twilight. 

2.0d 22/03/2021 NWC/CDOP3/PPS/SMHI

/SCI/ATBD/CloudProbabi

lity 

Updates for PPS v2021. 

2.0 26/03/2021 NWC/CDOP3/PPS/SMHI

/SCI/ATBD/CloudProbabi

lity 

Updates after PPS v2021 RR: 

RID-7, 53: Defined ‘technically running’ 

RID-020, 043, 047: editorial 

RID-42: updated CM-SAF information 

 

 

 

  



CM SAF 
NWC SAF 

 
Algorithm Theoretical Basis Document 

for Cloud Probability product 

 
Doc. No.:
 NWC/CDOP3/PPS/SCI/ATBD/CloudProbability 
Issue: 2.0 
Date: 26.04.2021 

 

4 

Table of contents 

List of Figures ........................................................................................................... 5 

List of Tables ............................................................................................................ 7 

1 The EUMETSAT SAF on Climate Monitoring ................................................... 8 

2 Introduction ........................................................................................................ 9 

2.1 Applicable documents 9 

2.2 Reference documents 9 

3 Theoretical description of the CMa-prob method ......................................... 10 

3.1 Background – problems with traditional cloud masking and suggested new approaches 10 

3.2 Bayesian theory 11 

3.3 The CMa-prob Naïve Bayesian approach 11 

3.4 Estimating conditional cloud probabilities from CALIPSO measurements 12 

3.5 Definition of a basic sub-set of constrained AVHRR image features 16 

3.6 Training the classifier using CALIPSO-CALIOP cloud data with dependencies on CALIOP-
estimated cloud optical thicknesses 23 

3.7 Resulting sets of optimal training statistics for different Earth surfaces 26 

4 Final implementation of CMa-prob and some demonstrated results .......... 31 

4.1 Demonstration of impact of using cloud detection sensitivity statistics instead of statistics 
based on original CALIOP cloud mask 31 

4.2 Treatment of data from satellites with the 1.6 micron channel replacing the 3.7 micron channel
 35 

4.3 Product demonstration 37 

5 Limitations and areas for future improvements ............................................ 40 

6 Final remarks .................................................................................................... 40 

7 References ........................................................................................................ 41 

8 Glossary ............................................................................................................ 43 
 
  



CM SAF 
NWC SAF 

 
Algorithm Theoretical Basis Document 

for Cloud Probability product 

 
Doc. No.:
 NWC/CDOP3/PPS/SCI/ATBD/CloudProbability 
Issue: 2.0 
Date: 26.04.2021 

 

5 

 

List of Figures 

Figure 3-1 Cloud probabilities estimated from global CALIPSO-CALIOP cloud 
data in the period 2006-2015 as a function of AVHRR 0.6 µm visible 
reflectances (Feature-Naïve in %, denoted Rvis). Left: Results over Tropical 
ocean surfaces (G6 in Table 3-4). Right: Results over High Latitude 
surfaces with permanent snow-cover (G13 in Table 3-4)............................... 13 

Figure 3-2 Cloud probabilities estimated from CALIPSO-CALIOP cloud data in 
the period 2006-2015 as a function of the temperature difference between the 
ERA-5 
(https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation)  
surface skin reference temperature and the AVHRR 11 µm brightness 
temperature (Feature_Naive in K, denoted Tirdiff). Left: Results over tropical 
ocean surfaces during day (G6 in Table 3-4). Right: Results over High 
Latitude snow-covered surfaces during day (G13 in Table 3-4). ..................... 14 

Figure 3-3 Cloud probabilities estimated from CALIPSO-CALIOP cloud data in 
the period 2006-2015 as a function temperature difference between the ERA-
5 surface skin reference temperature and the AVHRR 11 µm brightness 
temperature (Feature_Naive in K, denoted Tirdiff). Results are valid over 
High Latitude snow-covered surfaces (G13) during night and with strong 
near-surface inversions. ..................................................................................... 15 

Figure 3-4 Cloud probabilities estimated from CALIPSO-CALIOP cloud data in 
the period 2006-2015 as a function of AVHRR temperature differences 
between AVHRR channel 4 and 5 over Tropical ocean surfaces during night 
(surface group G6 in Table 3-4). Left panel shows results in original form and 
right panel if plotting results as a function of temperature differences 
subtracted with PPS thresholds (consisting of a dynamic threshold plus a 
tuning offset value). ............................................................................................ 16 

Figure 3-5 Hitrate and Kuipers skill scores as a function of filtered CALIOP cloud 
masks (cloud optical thickness limits) for CLARA-A1/PPS 2014 cloud masks. 
Results derived from 99 collocated NOAA-18 and CALIPSO-CALIOP cloud 
masks in the period 2006-2009. (From Karlsson and Johansson, 2013). ........... 24 

Figure 3-6 Hitrate as a function of filtered cloud optical thicknesses of the 
CALIOP cloud mask for different training scenarios (coloured curves) over ice 
free extratropical ocean (categories G4 and G8 in Table 3-4) during day (left) 
and night (right). The coloured curves describe results based on different 
restricted CALIOP cloud masks used when training. Thick lines denote 
possible solutions fulfilling the criterion that Hitrate should be maximized for 
the same filtered optical thickness as was used during training. ........................ 27 

Figure 3-7 Same as Figure 3-6 but for snow-free extratropical land surfaces 
(category G11 in Table 3-4) during day (left) and night (right). ........................... 27 



CM SAF 
NWC SAF 

 
Algorithm Theoretical Basis Document 

for Cloud Probability product 

 
Doc. No.:
 NWC/CDOP3/PPS/SCI/ATBD/CloudProbability 
Issue: 2.0 
Date: 26.04.2021 

 

6 

Figure 3-8 Same as Figure 3-6 but for homogeneous land surfaces with 
permanent snow-cover (category G13 in Table 3-4) during day (left) and night 
(right). ................................................................................................................. 28 

Figure 3-9 Same as Figure 3-6 but for dry land surfaces (category G10 in Table 
3-4, dominated by deserts) with sparse vegetation during day (left) and night 
(right). ................................................................................................................. 29 

Figure 4-1 Distribution of cloud occurrences (or cloud frequencies) as a function 
of the visible AVHRR reflectance at 0.6 micron (Rvis) over dry 
homogeneous surfaces (category G10 in Table 3-4 with predominantly 
desert surfaces). Left: Statistics based on training with a CALIOP cloud mask 
filtered at optical thickness 0.25. Right: Statistics based on training with the 
original unfiltered CALIOP cloud mask. .............................................................. 32 

Figure 4-2 Distribution of cloud occurrences (or cloud frequencies) as a function 
of the AVHRR reflectance at 3.7 micron (in %, image feature Rvis37 in Table 
3-2) over dry homogeneous surfaces (surface G10 in Table 3-4 with 
predominantly desert surfaces). Left: Statistics based on training with a 
CALIOP cloud mask filtered at optical thickness 0.25. Right: Statistics based 
on training with the original unfiltered CALIOP cloud mask. ............................... 32 

Figure 4-3 Night-time distribution of cloud occurrences (or cloud frequencies) as 
a function of the difference between the AVHRR brightness temperature at 
11 micron and the surface temperature from ERA-5 (image feature Tirdiff) 
over permanently snow-covered surfaces (group G13 in Table 3-4) at 
night. Left: Statistics based on training with a CALIOP cloud mask filtered at 
optical thickness 0.5. Right: Statistics based on training with the original 
unfiltered CALIOP cloud mask. ........................................................................... 34 

Figure 4-4 Illustration of cloud probabilities in a 2-D histogram with respect to 
features Twdiff (x-axis) and Tirdiff (y-axis) over snow-free land surfaces at 
high latitudes (category G11 in Table 3-4) during night. ..................................... 35 

Figure 4-5 Daytime distribution of cloud occurrences (or cloud frequencies) as a 
function of the reflectance quota (Rswir_3a in Table 3-2) between AVHRR-
heritage channels at 1.6 micron and 0.6 microns based on Aqua Modis data. 
Left: Distribution over dry surfaces (surface category G10 in Table 3-4). 
Right:  Distribution over surfaces with permanent snow-cover (surface 
category G13 in Table 3-4). All statistics are calculated from collocations with 
the original unfiltered CALIOP cloud mask. ........................................................ 36 

Figure 4-6 Part of an original NOAA-18 AVHRR GAC scene in satellite projection 
over the Greenland area registered in ascending mode (i.e., North is down, 
South is up) from 16 May 2007 at 11:59 UTC. Left: Colour composite with 
AVHRR channel 1 (red), channel 2 (green) and channel 4 (blue). Right: 
Corresponding CMa-Prob cloud probabilities as greyscale image with range 
0-100 %. Notice, however, that cloud probabilities below 50 % has a blueish 
colour. ................................................................................................................. 38 



CM SAF 
NWC SAF 

 
Algorithm Theoretical Basis Document 

for Cloud Probability product 

 
Doc. No.:
 NWC/CDOP3/PPS/SCI/ATBD/CloudProbability 
Issue: 2.0 
Date: 26.04.2021 

 

7 

Figure 4-7 Part of an original NOAA-17 AVHRR GAC scene in satellite projection 
over the Greenland area registered in descending mode (i.e., North is up, 
South is down) from 16May 2007 at 15:13 UTC. Left: Colour composite with 
AVHRR channel 1 (red), channel 2 (green) and channel 4 (blue). Right: 
Corresponding CMa-prob cloud probabilities as greyscale image with range 
0-100 %. Notice, however, that cloud probabilities below 50 % has a blueish 
colour. ................................................................................................................. 39 

 

List of Tables 

Table 3-1 Spectral channels of the Advanced Very High Resolution Radiometer 
(AVHRR). Three different versions of the instrument are described as well as 
corresponding satellites. ..................................................................................... 17 

Table 3-2 Used AVHRR image features for day illumination probabilistic cloud 
masking. ............................................................................................................. 18 

Table 3-3 Used transformed AVHRR image features for night illumination 
probabilistic cloud masking. ................................................................................ 21 

Table 3-4 The surface categories used for training the method and used for final 
cloud screening. Used abbreviations: NH=Northern Hemisphere, 
SH=Southern Hemisphere, SST=Sea Surface Temperatures, LST=Land 
Surface Temperatures. See text for further details. ............................................ 22 

Table 3-5 Estimated optimal Cloud Detection Sensitivies (i.e., lowest cloud layer 
optical thicknesses with probability of detection exceeding 50 %) for different 
Earth surfaces (defined in Table 3-4) and for different illumination categories. 
For these filtered optical thicknesses, the best resemblance is achieved with 
the CALIOP cloud mask over different surfaces. ................................................ 30 

 



CM SAF 
NWC SAF 

 
Algorithm Theoretical Basis Document 

for Cloud Probability product 

 
Doc. No.:
 NWC/CDOP3/PPS/SCI/ATBD/CloudProbability 
Issue: 2.0 
Date: 26.04.2021 

 

8 

1 The EUMETSAT SAF on Climate Monitoring 

The importance of climate monitoring with satellites was recognized in 2000 by EUMETSAT 

Member States when they amended the EUMETSAT Convention to affirm that the 

EUMETSAT mandate is also to “contribute to the operational monitoring of the climate and the 

detection of global climatic changes". Following this, EUMETSAT established within its 

Satellite Application Facility (SAF) network a dedicated centre, the SAF on Climate Monitoring 

(CM SAF, http://www.cmsaf.eu). 

The consortium of CM SAF currently comprises the Deutscher Wetterdienst (DWD) as host 

institute, and the partners from the Royal Meteorological Institute of Belgium (RMIB), the 

Finnish Meteorological Institute (FMI), the Royal Meteorological Institute of the Netherlands 

(KNMI), the Swedish Meteorological and Hydrological Institute (SMHI), the Meteorological 

Service of Switzerland (MeteoSwiss), and the Meteorological Service of the United Kingdom 

(UK MetOffice), and the Centre National de la Recherché Scientifique (CNRS). Since the 

beginning in 1999, the EUMETSAT Satellite Application Facility on Climate Monitoring 

(CM SAF) has developed and will continue to develop capabilities for a sustained generation 

and provision of Climate Data Records (CDR’s) derived from operational meteorological 

satellites. 

In particular the generation of long-term data sets is pursued. The ultimate aim is to make the 

resulting data sets suitable for the analysis of climate variability and potentially the detection 

of climate trends. CM SAF works in close collaboration with the EUMETSAT Central Facility 

and liaises with other satellite operators to advance the availability, quality and usability of 

Fundamental Climate Data Records (FCDRs) as defined by the Global Climate Observing 

System (GCOS). As a major task the CM SAF utilizes FCDRs to produce records of Essential 

Climate Variables (ECVs) as defined by GCOS. Thematically, the focus of CM SAF is on ECVs 

associated with the global energy and water cycle. 

Another essential task of CM SAF is to produce data sets that can serve applications related to 

the new Global Framework of Climate Services initiated by the WMO World Climate 

Conference-3 in 2009. CM SAF is supporting climate services at national meteorological and 

hydrological services (NMHSs) with long-term data records but also with data sets produced 

close to real time that can be used to prepare monthly/annual updates of the state of the climate. 

Both types of products together allow for a consistent description of mean values, anomalies, 

variability and potential trends for the chosen ECVs. CM SAF ECV data sets also serve the 

improvement of climate models both at global and regional scale. 

As an essential partner in the related international frameworks, in particular WMO SCOPE-CM 

(Sustained COordinated Processing of Environmental satellite data for Climate Monitoring), 

the CM SAF - together with the EUMETSAT Central Facility, assumes the role as main 

implementer of EUMETSAT’s commitments in support to global climate monitoring. This is 

achieved through: 

• Application of highest standards and guidelines as lined out by GCOS for the satellite 

data processing, 

• Processing of satellite data within a true international collaboration benefiting from 

developments at international level and pollinating the partnership with own ideas and 

standards, 

• Intensive validation and improvement of the CM SAF climate data records, 
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• Taking a major role in data set assessments performed by research organisations such as 

WCRP. This role provides the CM SAF with deep contacts to research organizations 

that form a substantial user group for the CM SAF CDRs, 

• Maintaining and providing an operational and sustained infrastructure that can serve the 

community within the transition of mature CDR products from the research community 

into operational environments. 

A catalogue of all available CM SAF products is accessible via the CM SAF webpage, 

www.cmsaf.eu/. Here, detailed information about product ordering, add-on tools, sample 

programs and documentation is provided. 

 

2 Introduction 

This Algorithm Theoretical Basis Document (ATBD) describes a new probabilistic cloud 

masking product - denoted CMa-prob – which has been developed by CM SAF during the 

CDOP-2 and CDOP-3 phases. Based on Bayesian theory, it is complementary to the standard 

SAFNWC PPS CMa cloud mask with the latter being used for the CM SAF CLARA-A1 and 

CLARA-A2 data records (i.e., forming the basis of the Fractional Cloud Cover product CM-

11011). For upcoming CLARA versions (i.e., CLARA-A3, and beyond), the probabilistic cloud 

mask will be used instead to improve the error characterisation of cloud masking and its 

influence on any downstream cloud, surface radiation and surface albedo products. For 

CLARA-A2, a preliminary demonstration product was provided for users to become acquainted 

with the product capability and for preliminary evaluation. 

The ATBD generally follows the description of the method in Karlsson et al. (2015) but also 

describes several extensions which were introduced to improve the usefulness of the CMa-prob 

product. One of the most central new features is that the CMa-prob value of 50 % has been 

tuned to give optimal cloud detection everywhere regardless of underlying surfaces and 

observation conditions. Karlsson et al. (2020) describe the final design of the methodology.  

Since the CMa-prob methodology is tightly linked to the NWC SAF PPS software package 

(i.e., with a shared use of image features and threshold datasets), the ATBD is now formally 

considered as one single NWC SAF document even if the product development took (and will 

continue to take) place in the CM SAF project. In this way, duplication of work associated with 

formal reviews in the two SAF projects is avoided.  

2.1 Applicable documents 

Refere

nce  
Title Code 

Version Date 

AD 1 
NWC SAF Product Requirements 

Document 
NWC/CDOP3/SAF/AEMET/MGT/PRD 

1.4e 23/11/2020 

2.2 Reference documents 

Refere

nce  
Title Code 

Version Date 

RD 1 

Algorithm Theoretical Basis 

Document for the Cloud Mask of 

the NWC/PPS 

NWC/CDOP3/PPS/SCI/ATBD/CloudMask 

3.0 26/04/2021 
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Refere

nce  
Title Code 

Version Date 

RD 2 

Scientific and Validation Report 

for the Cloud Product Processors 

of the NWC/PPS 

NWC/CDOP3/PPS/SMHI/SCI/VR/Cloud 

3.0d 15/03/2021 

 

3 Theoretical description of the CMa-prob method 

3.1 Background – problems with traditional cloud masking and suggested new 

approaches 

For many years, the definition of fixed cloud masks or cloud masks with a small set of quality 

flags has been the most common way of solving the cloud screening problem in applications 

based on passive multispectral satellite imagery. Many examples of this exist in the literature, 

e.g., Dybbroe et al., (2005a, 2005b), Kriebel et al. (2003), Derrien and LeGleau (2005), Frey et 

al. (2008) and Pavolonis et al. (2005). The use of a fixed cloud mask is straightforward for 

downstream applications (e.g. for Sea Surface Temperature (SST), surface albedo, clear sky 

radiance and NDVI vegetation index retrievals) which need to discard all cloudy pixels before 

the retrieval of the actual parameter. However, the drawback is that no, or very limited, 

information about the uncertainty in the cloud screening is generally available with these 

methods. Consequently, the error characteristics are generally unknown even if internal 

parameter-specific algorithm uncertainties may be known. Furthermore, a cloud mask is usually 

designed with a particular purpose or application in mind. Consequently, the performance may 

vary considerably from method to method depending on whether the cloud screening is 

executed in a clear-conservative way (i.e., defining clear pixels with high confidence) or in a 

cloud-conservative way (i.e., defining cloudy pixels with high confidence). Instead, the desire 

to define a more flexible cloud mask, suitable for any (or at least most) downstream 

applications, has become increasingly important. Such a cloud mask can either be expressed as 

a cloud index (as suggested by Khlopenkov and Thrishchenko, 2007) or a cloud probability 

(Merchant et al., 2005) meaning that any user should be able to define the most suitable mode 

of operation. In other words, it should be possible to use anywhere in the range from the clear-

conservative mode to the cloud-conservative mode by just changing the tolerance level of the 

required cloud probabilities.  

Although statistical and probabilistic (Bayesian) theory has been well established for decades 

(or even centuries), a problem has been to find appropriate observational references to represent 

the true global cloud occurrence from which a firm statistical cloud distribution database can 

be built. However, with the 2006 launch of the Cloud-Aerosol Lidar with Orthogonal 

Polarization (CALIOP) onboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite 

Observations (CALIPSO) satellite, the situation has improved considerably. CALIOP offers 

global cloud observations with higher detection sensitivity than any other passive instrument 

(Winker et al., 2009). Furthermore, its measurements can be collocated (however, restricted to 

certain conditions) to observations by current operational AVHRR sensors. This has triggered 

numerous studies examining AVHRR-based cloud detection methods in detail (e.g., Karlsson 

and Dybbroe, 2010, Karlsson and Johansson, 2013 and Stengel et al., 2014). It has also paved 

the way for more systematic attempts to provide cloud probabilities rather than fixed cloud 

masks (Heidinger et al., 2012, and Musial et al., 2014), and the CMa-prob development 

described here is another example of this. Recently also improved versions of the CALIOP 

cloud datasets have been utilised for in-depth studies of the cloud detection limits for methods 
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based on AVHRR data (Karlsson et al., 2018). Their findings and their tools have been 

important for defining the final concept of the CMa-prob methodology (as reported by Karlsson 

et al., 2020 and further outlined in Section 3.6 and 3.7).      

3.2 Bayesian theory 

Let us first recapitulate some fundamentals of the probabilistic statistical theory. The theory is 

based on the pioneering work by Thomas Bayes. He formulated already in 1763 his famous 

theorem (nowadays referred to as Bayes’ Theorem) for estimation of the posterior probability 

of an event as a function of likelihoods (conditional probabilities) and a priori probabilities of 

other events. In the context of analysis of radiance feature vectors measured by satellite sensors, 

we may express Bayes’ Theorem as follows: If F is a vector of satellite radiances or image 

features (e.g., brightness temperature differences or reflectances), we may denote the posterior 

conditional probability that it is cloudy when F is given as P(cloudy|F). In the same sense, we 

may denote the conditional probability that vector F occurs given it is cloudy as P(F|cloudy). 

If also introducing the overall probability (climatological mean) that it is cloudy as 𝑃(𝑐𝑙𝑜𝑢𝑑𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

and the overall probability that any given value of F occurs as P(F), we may write Bayes’ 

Theorem as follows: 

  

𝑃(𝑐𝑙𝑜𝑢𝑑𝑦|𝑭) =
𝑃(𝑐𝑙𝑜𝑢𝑑𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑃(𝑭|𝑐𝑙𝑜𝑢𝑑𝑦)

 𝑃(𝑭)
  

            (1)

  

Despite its simple form, the solution to Eq. 1 is not easy to find in a situation with multispectral 

measurements (i.e., when dimensions of F are large). The estimation of parameters on the right-

hand side of Eq. 1 (especially P(F|cloudy)) becomes increasingly difficult as more image 

features that are chosen or added. It then requires extraction from huge statistical training 

datasets to fully describe the dependence on individual image features and, in addition, the 

effect of their mutual correlation. What complicates things even further is that even with one 

specific realisation of feature vector F, probabilities may differ depending on different 

environmental situations (e.g. if the pixel measurement is made in winter or in summer, over 

land or the ocean, in mountainous terrain or over the desert, etc.). Thus, the training process 

needs to consider additional ancillary information for an accurate description of the 

environmental conditions.  

 

To reduce complexity of the problem, one can utilise some approximations. One approach could 

be the entirely empirical approach of estimating P(cloudy|F) directly from predefined Lookup 

Tables composed during training with some stratification based on ancillary data. Musial et al. 

(2014) demonstrated such a method. Alternatively, some simplifications and approximations 

could be made to Eq. 1. One such simplification is to use the Naïve Bayesian approach, as is 

done for the CMa-prob method.  

3.3 The CMa-prob Naïve Bayesian approach 

If assuming that individual image feature components fi in F are all independent (i.e., image 

features are uncorrelated), a simplification is possible so that individual probabilities may 

multiply to get the total probability, following the fundamental statistical rule for “Compound 

Probability of Independent Events”. Thus, Eq. 1 reduces to 
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𝑃(𝑐𝑙𝑜𝑢𝑑𝑦|𝑭) =
𝑃(𝑐𝑙𝑜𝑢𝑑𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∏ 𝑃(𝑓𝑖|𝑐𝑙𝑜𝑢𝑑𝑦)𝑖

𝑃(𝑭)
  

           (2) 

This approximation of Bayes’ Theorem is denoted the Naïve Bayesian approximation.  

The problem now reduces to estimating individual probabilities 𝑃(𝑓𝑖|𝑐𝑙𝑜𝑢𝑑𝑦) and then simply 

multiplying them. However, it must be emphasized that even if we have achieved a very simple 

equation for calculation of the probabilities, the big scientific challenge lies in defining and 

estimating the conditional probabilities on the right-hand side of the equation. This includes the 

very fundamental choice of appropriate image features fi. These must be chosen in an optimal 

way, with each individual feature having documented capability to provide essential 

information about cloud occurrence. The following sub-sections will describe the methodology 

used and the choice of optimal image feature components fi. 

We also notice that there must be a mutual inter-dependence between 𝑃(𝑓𝑖|𝑐𝑙𝑜𝑢𝑑𝑦)  and 

𝑃(𝑐𝑙𝑜𝑢𝑑𝑦|𝑓𝑖) . More clearly, if knowing the conditional probability that it is cloudy given a 

certain image feature value, we can also calculate it the other way around from the same 

statistical training dataset (provided that both absolute and relative frequencies of cloud 

occurrences are stored). The CMA-prob method utilises this fact in its definition. It is often 

more practical and easier to understand results for individual image features if compiling 

statistical distributions of 𝑃(𝑐𝑙𝑜𝑢𝑑𝑦|𝑓𝑖). It also provides a natural link to development efforts 

trying to find optimal thresholds in multispectral thresholding schemes like the standard CMa 

method in the PPS cloud processing package. The remaining factors on the right-hand side of 

Eq. 2 may also be calculated from training data. An estimation of the mean cloud occurrence 

𝑃(𝑐𝑙𝑜𝑢𝑑𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅) is possible and the factor P(F) may be estimated by summing contributions from 

both cloudy and clear cases and then compute the overall frequency for which any particular 

realisation of vector F occurs. 

The Naïve Bayesian approximation has been successfully applied to many scientific 

applications (e.g., Kossin and Sitkowski, 2009) as well as to the AVHRR cloud screening 

problem (Heidinger et al., 2012). The main difference between CMa-prob and the latter method 

lies in the choice of image features and the used ancillary information.  

3.4 Estimating conditional cloud probabilities from CALIPSO measurements 

Having access to a system that can match and co-locate CALIPSO/CALIOP and 

NOAA/METOP AVHRR measurements makes it relatively straight-forward and simple to 

estimate conditional cloud probabilities, i.e. the frequency that it is cloudy at a certain image 

feature value 𝑃(𝑐𝑙𝑜𝑢𝑑𝑦|𝑓𝑖) . However, as previously mentioned, this should only be done by 

using some restrictions on e.g. illumination conditions and the geographical coverage in order 

to avoid distributions either having a dynamical range of probabilities being too limited or too 

broad. If these restrictions are not considered, the final ability to separate cloudy from cloud-

free radiances would be reduced (i.e., too often give cloud probabilities close to 50 %). 

Figure 3-1 shows an example of estimated cloud probabilities as a function of the AVHRR 

visible reflectances from the 0.6 µm channel over tropical ocean surfaces (left panel) and high-

latitude homogeneous surfaces with permanent snow-cover (right panel). Detailed information 

on all surface categories and the definition of AVHRR-based image features is given later in the 

next section (Table 3-1 to Table 3-4). The reference CALIPSO results are original CALIOP 
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cloud masks (CLAY product version 4.1) which have been used to calculate cloud probabilities 

as a function of individual image feature values (i.e., reflectances and brightness temperatures 

or combinations of channel parameters). All CALIOP-detected clouds were used to calculate 

these cloud probabilities, and this explains why the cloud probabilities never reaches the zero 

level (i.e., very thin clouds may exist despite very low measured reflectances in Figure 3-1). It 

should also be mentioned that daytime conditions in Figure 3-1 are valid for solar zenith angles 

below 80 degrees. Night-time conditions are defined for solar zenith angles above 89 degrees. 

The intermediate category Twilight is consequently defined by solar zenith angles between 80 

and 89 degrees. 

 

Figure 3-1 Cloud probabilities estimated from global CALIPSO-CALIOP cloud data in the 

period 2006-2015 as a function of AVHRR 0.6 µm visible reflectances (Feature-Naïve in %, 

denoted Rvis). Left: Results over Tropical ocean surfaces (G6 in Table 3-4). Right: Results 

over High Latitude surfaces with permanent snow-cover (G13 in Table 3-4). 

From Figure 3-1, we conclude that cloud probabilities increase rapidly with reflectance over a 

very dark surface such as the ice-free ocean. Probabilities exceed 50 % already at a very low 

reflectance value (at approximately 5 % reflectance) and reach above the 80 % level near 12 % 

reflectance. Thus, conditions for cloud-screening appear almost ideal (i.e., applying a simple 

threshold at 5 % reflectance would give very satisfying results). This is not the case for 

conditions with the snow-covered ground in Figure 3-1 (right). Here, it is difficult to arrive at a 

robust, unique reflectance value where cloud probability exceeds 50 % (which would be needed 

for this image feature to be useful for cloud screening purposes). This occurs only for moderate 

to large reflectance values (30-60 % and above 90 %. For the intermediate region of high 

reflectances, probabilities are actually well below 50 % and even below 40 % for reflectivities 

between 85 % and 90 %. The reduced probability, especially in the interval 70-90 %, means 

that most cloud-free snow surfaces have high reflectances in this interval which are very similar 

to cloud reflectivities. Consequently, cloud-free conditions are more likely to occur than cloudy 

conditions in this reflectance interval. We also notice that zero reflectances are never reached 

over these bright surfaces.  
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A similar situation appears over the same surfaces for the difference between the infrared 

brightness temperature of the 11 μm channel and the surface skin temperature (Figure 3-2, 

difference denoted Tirdiff). In this figure, positive feature values mean that measured brightness 

temperatures are colder than the surface temperature. Notice also that these plots only show the 

relative cloud frequency or cloud probability for each feature value on the x-axis. Thus, there 

is no information about the occurrence density for each feature value here, meaning that 

spurious noisy values or some rare deviations, e.g., due to bad navigation (see outliers in the 

right part of Figure 3-2) appear to be more frequent than they really are. These outliers represent 

just a very small number of cases.  

 

Excellent separability conditions are seen over tropical ocean surfaces where a threshold near 

5 K would identify the vast majority of clouds. The situation is more problematic over snow-

covered surfaces. In particular, notice the effect of near-surface temperature inversions (e.g., 

for negative temperature differences in Fig. 3-2 meaning that measurements are warmer than 

the surface temperature). We notice that clouds which are warmer than the surface may occur 

over the tropical ocean (e.g., a small fraction of marine stratocumulus) as well as over snow-

covered surfaces. However, such clouds occur much more frequently over snow-covered 

surfaces. While the temperature difference (i.e., the inversion strength) is generally small over 

the ocean, it is generally much larger over snow-covered surfaces. The latter surfaces are 

dominated by cold and highly elevated surfaces in Antarctica and Greenland. It is clear that the 

use of a single threshold, e.g. at 5 K, would be able to detect the vast majority of clouds over 

the tropical ocean while the same threshold applied over snow-covered surfaces would instead 

miss a large fraction of all existing clouds. 

 

Figure 3-2 Cloud probabilities estimated from CALIPSO-CALIOP cloud data in the period 

2006-2015 as a function of the temperature difference between the ERA-5 

(https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation)  surface skin 

reference temperature and the AVHRR 11 µm brightness temperature (Feature_Naive in K, 

denoted Tirdiff). Left: Results over tropical ocean surfaces during day (G6 in Table 3-4). 

Right: Results over High Latitude snow-covered surfaces during day (G13 in Table 3-4). 

https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation
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Figure 3-3 Cloud probabilities estimated from CALIPSO-CALIOP cloud data in the period 

2006-2015 as a function temperature difference between the ERA-5 surface skin reference 

temperature and the AVHRR 11 µm brightness temperature (Feature_Naive in K, denoted 

Tirdiff). Results are valid over High Latitude snow-covered surfaces (G13) during night and 

with strong near-surface inversions. 

Statistics from situations with very strong near-surface inversions, i.e., when surface 

temperatures are colder than temperatures in the 950 hPa level, over snow-covered surfaces at 

night in Figure 3-3 are also interesting. In such situations, using this temperature difference 

feature for cloud screening would be even worse. Clouds here may occur for any measured 

temperature difference but often with probabilities which are not far from 50 % (the level of 

maximum uncertainty). Only for clouds which are more than 20 K colder than the surface 

(generally medium- and high-level clouds) or possibly also clouds which are 5-15 K warmer 

than the surface (low-level inversion clouds) we get high enough cloud probabilities to detect 

clouds with certainty. We also notice a minimum in cloud probabilities at about 5 K instead of 

near 0 K which would be the anticipated value, i.e. a pixel that is neither warmer nor colder 

than the surface should be generally cloud-free. This indicates that the ERA-5 surface 

temperature reference probably has a small warm bias over these surfaces, i.e., that surface 

temperature inversions are probably somewhat stronger than ERA-5 is capable of showing. 

This is supported by, e.g., long-time experiences of a warm bias for ECMWF-forecasted 

minimum 2-meter temperatures in boreal forest regions at high latitudes during winter (Hogan 

et al., 2017). However, some cases of large positive differences in Fig. 3.3 may be linked to 

navigation errors in coastal areas with steep orography. Comparison of Figures Figure 3-3 and 

Figure 3-2 (right) reveal that cloud probabilities are generally higher over these surfaces at 
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(Polar) night conditions. However, a significant fraction of these clouds comes from very thin 

clouds that are not likely to be detected in passive satellite imagery. 

 

We conclude from Figure 3-1 to Figure 3-3 that conditions for efficient cloud screening may 

be drastically different depending on the geographic location and the prevailing illumination 

conditions (i.e., day, night or twilight). This is one of the explanations for the very successful 

performance of simple bi-spectral VIS-IR cloud screening methods at low- to moderate 

latitudes (best exemplified by the results derived mainly from geostationary satellite data of the 

International Satellite Cloud Climatological Project – ISCCP – see Rossow et al., 1999 and 

Young et al., 2018). On the other hand, it also clearly illustrates potential serious limitations for 

the same methods over high latitudes and over the polar regions (as highlighted by Karlsson 

and Devasthale, 2018). 

3.5 Definition of a basic sub-set of constrained AVHRR image features   

The Naïve Bayesian CMa-prob method utilises estimated conditional cloud probabilities 

(introduced in the previous section) for a sub-set of image features. However, rather than to 

define them in their purest form (as illustrated in Figure 3-1 to Figure 3-3) we have chosen to 

define them linked to pre-calculated dynamic image feature thresholds used by the Polar 

Platform System cloud software package (PPS, see Dybbroe et al, 2005a, 2005b) and in this 

particular case PPS version 2021[RD 1]. The reason for linking image features to pre-calculated 

thresholds is that the latter are defined across a wide range of environmental conditions (see 

Dybbroe et al., 2005a for more details). This concerns image feature variability due to the 

following factors: Solar and satellite geometry (direct angular dependence and dependence on 

scattering angles), prevailing atmospheric profiles of temperature and humidity, climatological 

ozone and aerosol amounts, topography and land cover, and spectral surface emissivities. 

Without considering  

 

Figure 3-4 Cloud probabilities estimated from CALIPSO-CALIOP cloud data in the period 

2006-2015 as a function of AVHRR temperature differences between AVHRR channel 4 and 

5 over Tropical ocean surfaces during night (surface group G6 in Table 3-4). Left panel 

shows results in original form and right panel if plotting results as a function of temperature 

differences subtracted with PPS thresholds (consisting of a dynamic threshold plus a tuning 

offset value).  
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these factors when training the probabilistic classifier, the results risk being imprecise and, most 

likely, misleading. We claim that it is better to piggy-back on existing prepared threshold 

information, based on knowledge built on many years of cloud thresholding experience, than 

to try to train a classifier from scratch as a function of all these mentioned factors influencing 

the results. The latter would require the creation of very large dimension Look-up Tables of 

statistical relations of cloudiness and image features and their respective dependencies on a 

wide range of environmental factors. 

 

To illustrate the usefulness of this concept we consider one of the most commonly used AVHRR 

image features for the detection of thin cirrus clouds, initially suggested by Inoue (1987): the 

brightness temperature difference between AVHRR channels 4 and 5 at 11 µm and 12 µm, 

respectively (denoted Tcidiff in Table 3-3). The main principle used for Cirrus detection is 

normally that the cloud transmissivity for thin ice clouds is higher in AVHRR channel 4 than in 

AVHRR channel 5, thus creating a positive brightness temperature difference between AVHRR 

channels 4 and 5. Figure 3-4 shows the cloud probabilities as a function of this temperature 

difference (Figure 3-4, left) but also as a function of the temperature difference relative to the 

corresponding PPS threshold (Figure 3-4, right). 

 

In its original form (Figure 3-4, left), we have two peaks in cloud occurrence where one is for 

differences close to zero, and the other for values exceeding approximately 4 K. Thus, the area 

with lower cloud frequencies between the peaks spans an interval of almost 4 K. In the 

alternative formulation (Figure 3-4, right) results are much more distinctly organised where the 

interval with lower frequencies is now reduced to only about 2 K. We interpret this as primarily 

an effect of being able to take into account the natural cloud-free contribution from atmospheric 

water vapour emission in the split-window channels. This emission is also able to create a clear 

temperature difference in the absence of cirrus clouds explaining the broader less distinct 

probability distribution in its original form for temperature differences below approximately 4 

K in Figure 3-4 (left). The threshold adjusted distributions after the coordinate change now 

clearly separate thin cirrus clouds to the right in the plot from the opaque clouds in the left part 

of the plot with cloud-free cases (although still allowing occurrence of very thin clouds) now 

concentrated around the x-coordinate value of around –1 K.  

 

Table 3-1 Spectral channels of the Advanced Very High Resolution Radiometer (AVHRR). 

Three different versions of the instrument are described as well as corresponding satellites. 

Channel  

Number  

Wavelength 

(µm) 

AVHRR/1 

Tiros-N, 

NOAA-6,8,10 

Wavelength 

(µm) 

AVHRR/2 

NOAA-7,9,11,12,14 

Wavelength 

(µm) 

AVHRR/3 

NOAA-15,16,17,18 

NOAA-19, Metop-A 

Metop-B, Metop-C 

1 

2 

3a 

3b 

4 

5 

0.58-0.68 

0.725-1.10 

- 

3.55-3.93 

10.50-11.50 

Channel 4 repeated     

0.58-0.68 

0.725-1.10 

- 

3.55-3.93 

10.50-11.50 

11.5-12.5 

0.58-0.68 

0.725-1.10 

1.58-1.64 

3.55-3.93 

10.50-11.50 

11.5-12.5 
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Table 3-2 Used AVHRR image features for day illumination probabilistic cloud masking. 

Feature name Definition Main cloud detection ability 

 

Rvis 

 

 

Over land: AVHRR channel 1 TOA 

reflectances minus PPS thresholds 

 

Over ocean: AVHRR channel 2 TOA 

reflectances minus PPS thresholds 

 

 

Identification of bright clouds over dark 

Earth surfaces 

 

Tirdiff 

 

 

AVHRR channel 4 brightness 

temperatures minus ERA-5 surface 

skin temperatures 

minus PPS thresholds 

  

 

Identification of clouds being significantly 

colder than the Earth surface 

 

Rswir_3a 

(morning orbit 

AVHRR/3) 

 

 

AVHRR channel 3a TOA reflectances 

divided by AVHRR channel 1 TOA 

reflectances 

Identification of clouds with significant 

reflection in the visible near-infrared 

region (in particular water clouds and thick 

multi-layered ice clouds over snow-

covered surfaces) 

 

Rvis37 

(afternoon orbit all 

AVHRRs and morning 

orbit AVHRR/1 + 

AVHRR/2) 

 

 

AVHRR channel 3b TOA reflectances 

 

 

 

Identification of clouds with significant 

reflection in the short-wave infrared region 

(water clouds and thick multi-layered ice 

clouds 

 

Rswir_quota 

(afternoon orbit all 

AVHRRs and morning 

orbit AVHRR/1 + 

AVHRR/2 

 

 

AVHRR channel 3b TOA reflectances 

divided by AVHRR channel 1 TOA 

reflectances 

 

Identification of clouds with significant 

reflection in the short-wave infrared region 

(water clouds and thick multi-layered ice 

clouds), especially over ice and snow 

surfaces. 

   

 

Rswir_3b 

(afternoon orbit all 

AVHRRs) 

 

 

AVHRR channel 3b brightness 

temperatures minus AVHRR channel 

5 brightness temperatures minus PPS 

thresholds 

 

Identification of clouds with significant 

reflection in the visible near-infrared 

region (in particular water clouds and thick 

multi-layered ice clouds over snow-

covered surfaces) 

 

 

Texture_day 

 

 

Over land: Not used (surface 

variability is generally too large)! 

 

Over ocean: Sum of local 3x3 pixel 

variances for  

AVHRR channel 4 brightness 

temperatures and AVHRR channel 1 

TOA reflectances 

 

Identification of fractional or broken 

clouds over ocean 
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With this background. we now list in Tables Table 3-2 and Table 3-3 a set of constrained image 

features (related to original AVHRR channels as described in Table 3-1) used for the definition 

of the CMa-prob probabilistic cloud mask estimates. Different image features are selected for 

two scene categories: day (solar zenith angle [SZA] below 80º); Tab. 3-2 and night (SZA ≥ 89º; 

Tab. 3-3). For the twilight case (80º ≤ SZA < 89º) either the day or night approach is used 

depending on if non-zero reflectances are detected in AVHRR channel 1. Notice that, because 

of the differences between the three AVHRR versions (Table 3-1) and the strategy of the 

switching of 3a and 3b channels for AVHRR/3 (i.e., switching active only for satellites in 

morning orbit), only a subset of the listed image features in Tables Table 3-2 and Table 3-3 are 

used simultaneously and, therefore,  the number of used features varies from 3 for AVHRR/1 

up to 6 for AVHRR/3).  

 

Only one feature, Tirdiff,  is used both day and night for all AVHRR versions. However, it 

should be noted that the underlying statistics compiled during the training of the method is here 

separated into day and night categories. One of the night features in Table 3-3, Tcidiff, is also 

used during day for AVHRR/3 when the 1.6 micron channel is active. The reason is that this 

feature contributes to the detection of thin ice (cirrus) clouds. This detection is difficult when 

using features involving the1.6 micron channel. Thus, by adding the use of Tcidiff in this case 

we are able to get approximately the same performance as we get from the daytime feature 

Rswir_3b in Table 3-2, a feature which is capable of detecting both ice and water clouds. 

 

Overall, it is clear that the information in the 3.7 micron channel (channel 3b) is fundamental 

for the success of cloud detection based on AVHRR data. This fact clearly distinguishes 

AVHRR-based cloud datasets from cloud datasets derived from other historic imaging sensors. 

However, this channel has unfortunately also specific problems which must be accounted for. 

One problem that specifically occurs in data from AVHRR/1 and AVHRR/2 is the appearance 

of noise stripes in the images with varying intensity and impact. The noise seriously affects all 

image features based on channel 3b and especially those being used during night in Table 3-3 

(since the noise is most serious for cold targets in the images). We have used a noise filtering 

method proposed by Karlsson et al, (2015) for minimising the effects of channel 3b noise.  

Another limitation of channel 3b is that the channel easily saturates, i.e., reaching static 

maximum brightness temperatures, over very warm surfaces such as over deserts (as discussed 

by Trischenko et al., 2002). This is more serious for AVHRR/1 and AVHRR/2 versions since 

the saturation temperature is close to 322 K while the sensitivity has increased to approximately 

335 K for AVHRR/3 (Trischenko et al., 2002). A consequence of this is that features based on 

channel 3b cannot be used properly when temperatures are close to or exceeding these 

saturation limits. For CMA-prob we have excluded the use of features derived from channel 3b 

for the AVHRR/1 and AVHRR/2 sensor versions if brightness temperatures in this channel 

exceed 320 K and if at the same time brightness temperatures in channel 4 exceed 305 K. No 

actions have been taken for AVHRR/3 since the increased sensitivity for this sensor has 

basically solved the problem of saturation.  

 

To account for geographical and topographical differences, we defined 28 geographical surface 

categories over which we trained the probabilistic classifiers. These categories are listed in 

Table 3-4. Ice cover information is taken from OSI SAF ice concentration data and snow cover 

information (interpreted from the snow depth parameter) is taken from ERA-5 re-analyses. The 

land-sea mask is taken from USGS landuse dataset and the labelling of whether or not the 

surface is dry is based on land emissivity climatologies from MODIS Collection 6.1 (see RD 1 

for more details on the use of ancillary datasets). The coastal categories (G27 and G28) were 
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defined as pixels where 25-90 % of the local surroundings (45x45 km for 5 km GAC data and 

11x11 km för 1 km datasets, defining the base for the calculation of the Fraction of Land 

parameter) belonged to another Earth surface category (land or ocean) than the current pixel. 

Observe that we only use the specific coastal categories for satellite viewing angles below 58 

degrees. For larger viewing angles the land-sea differences will be more clearly mixed up due 

to very large FOVs. To still not be too vulnerable to, e. g., small navigation errors outside of 

the threshold maximum viewing angle, the land-sea distinction is here specified by a 25 % limit 

of the Fraction of Land parameter. The classifier was trained using the CALIPSO-CALIOP 

cloud product, denoted Cloud and Aerosol Layer Information product version 4.1.  

 

Several sunglint categories are included among the ocean surfaces in Table 3-4. However, 

generally the matching of CALIOP and AVHRR observations does not allow studying sunglint 

effects, thus no statistics for sunglint conditions can be compiled. We have overcome this 

problem by utilizing the fact that some sunglint conditions are actually encountered in 

CALIOP-AVHRR matches because of orbital drift effects of NOAA-18 and NOAA-19 

satellites in the 2011-2015 period. This have led to increasing viewing angles in matched 

AVHRR data and consequently increasing chances of observing sunglints. Thus, statistics for 

weak and moderate sunglint have then been possible to compile and is now used by CMA-prob. 

Unfortunately, this could only be done for AVHRRs with channel 3b active during day since 

matchups with sunglint conditions cannot be found for AVHRRs with channel 3a active. 

Consequently, we use only night-time features according to Table 3-3 in sunglint conditions 

when channel 3a is active. The same restriction is also applied to data from AVHRR/1 since the 

sunglint statistics derived from AVHRR/3 with channel 3b active is heavily relying on 

information from AVHRR channel 5 which is missing in AVHRR/1. Thus, sunglints are treated 

exclusively with information from feature Tirdiff and Texture_night for AVHRR/1.  

 

In summary, we trained the probabilistic classifier for 28 different surface regions, 2 

illumination conditions and 3-6 AVHRR feature tests (depending on AVHRR version and 

satellite orbit mode) for each illumination class yielding a total of between 168 to 336 unique, 

individual probabilistic estimates (which are all linked to the same number of individual 

probability distribution functions, PDFs). 
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Table 3-3 Used transformed AVHRR image features for night illumination probabilistic 

cloud masking. 

Feature name Definition Main cloud detection ability 

 

Tirdiff 

 

 

AVHRR channel 4 brightness 

temperatures minus ERA-5 surface 

skin temperatures 

minus PPS thresholds 

  

 

Identification of clouds which are 

significantly colder than the Earth surface 

 

Tcidiff 

(AVHRR/2 + 

AVHRR/3)  

 

 

AVHRR channel 4 brightness 

temperatures minus AVHRR channel 

5 brightness temperatures  

minus PPS thresholds 

  

 

Identification of thin cirrus clouds  

(however, also used also during day for 

AVHRR/3 with the 1.6 micron channel 

active -see text) 

 

Twdiff 

 

 

AVHRR channel 3b brightness 

temperatures minus AVHRR channel 

4 brightness temperatures 

minus PPS thresholds 

 

 

Identification of water clouds 

 

2D_Tirdiff_Twdiff 

 

 

Joint and linked use of features Tirdiff 

and Twdiff in 2-dimensional lookup 

tables. 

 

Applied over cold land surfaces and over 

ice-covered ocean for a more accurate 

identification of water clouds in very cold 

situations. 

 

 

Texture_night 

(AVHRR/2 + 

AVHRR/3) 

 

Over land: Not used (surface 

variability is generally too large)! 

 

Over ocean: (Sum of local 3x3 pixel 

variances for  

AVHRR channel 4 brightness 

temperatures and 

AVHRR channel 3b and 5 brightness 

temperature differences) 

minus PPS thresholds    

 

Identification of fractional or broken 

clouds over ocean 

 

Texture_night 

(AVHRR/1) 

 

 

Over land: Not used (surface 

variability is generally too large)! 

 

Over ocean: Local 3x3 pixel variances 

for AVHRR channel 4 brightness 

temperatures minus PPS thresholds. 

    

 

Identification of fractional or broken 

clouds over ocean 

 
  



CM SAF 
NWC SAF 

 
Algorithm Theoretical Basis Document 

for Cloud Probability product 

 
Doc. No.:
 NWC/CDOP3/PPS/SCI/ATBD/CloudProbability 
Issue: 2.0 
Date: 26.04.2021 

 

22 

Table 3-4 The surface categories used for training the method and used for final cloud 

screening. Used abbreviations: NH=Northern Hemisphere, SH=Southern Hemisphere, 

SST=Sea Surface Temperatures, LST=Land Surface Temperatures. See text for further 

details. 

SURFACE NAME Surface id Short description 

Marginal sea ice high latitudes G1 Sea ice concentrations in the range 15-90 %   

Sea ice high latitudes G2 Sea ice concentrations above 90 % 

Ocean polar north G3 Ice-free ocean in NH with SSTs below 5 ̊C 

Ocean high latitude north G4 Ice-free ocean in NH with SSTs in the range 5-12 ̊C 

Ocean mid latitude north G5 Ocean in NH with SSTs in the range 12-22 ̊C 

Ocean tropical G6 Ocean with SSTs above 22 ̊C 

Ocean mid latitude south G7 Ocean in SH with SSTs in the range 12-22 ̊C 

Ocean high latitude south G8 Ice-free ocean in SH with SSTs in the range 5-12 ̊C 

Ocean polar south G9 Ice-free ocean in SH with SSTs below 5 ̊C 

Land dry homogeneous G10 Deserts and adjacent dry regions (no rough terrain or snow) 

Land homogeneous extra tropical G11 Homogenous land with vegetation and LSTs below 12 ̊C 

Land homogeneous extra tropical 

seasonal snow 

G12 

 

Homogenous land with vegetation, seasonal snow cover, 

and LSTs below 12 ̊C 

Land homogeneous extra tropical 

permanent snow 

G13 

 

Homogeneous land with permanent snow cover 

 

Land dry rough G14 Deserts and adjacent dry regions in rough terrain (no snow) 

Land rough extra tropical 

  

G15 

 

Land with vegetation over rough terrain and with LSTs 

below 12 ̊C 

Land rough extra tropical seasonal 

snow 

G16 

 

Land with vegetation over rough terrain with seasonal snow 

and LSTs below 12 ̊C 

Land rough extra tropical 

permanent snow  

G17 

 

Extratropical land over rough terrain with permanent snow 

cover 

Land homogeneous tropical G18 Homogenous land with vegetation and LSTs above 12 ̊C 

Land rough tropical 

 

G19 

 

Land over rough terrain with vegetation and LSTs above 12 

̊C 

Ocean polar north sunglint G20 Arctic ice-free ocean with no sunglint and SSTs below 5 ̊C 

Ocean high latitude north 

sunglint 
G21 

Ice-free ocean in NH with no sunglint and SSTs in the 

interval 5-12 ̊C 

Ocean mid latitude north sunglint 

 

G22 

 

Ocean in NH with no sunglint and SSTs in the interval 12-22 

̊C 

Ocean tropical sunglint G23 Tropical ocean with sunglint and SSTs above 22 ̊C 

Ocean mid latitude south sunglint G24 Ocean in SH with sunglint and SSTs in the interval 12-22 ̊C 

Ocean high latitude south 

sunglint 

Ocean polar south sunglint 

G25 

 

G26 

Ice-free ocean in SH with sunglint and SSTs in the interval 5-

12 ̊C 

Ice-free ocean in SH with no sunglint and SSTs below 5  ̊C 

Coast extra tropical 

 

G27 

 

Coastal areas with LSTs below 12 ̊C and viewing angles 

(satellites zenith angles) below 58 degrees. 

Coast tropical 

 

G28 

 

Coastal areas with LSTs above 12 ̊C and viewing angles 

(satellites zenith angles) below 58 degrees. 
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3.6 Training the classifier using CALIPSO-CALIOP cloud data with dependencies on 

CALIOP-estimated cloud optical thicknesses 

To develop the CMa-prob classifier, we have taken advantage of the previously reported studies 

based on collocated NOAA/METOP AVHRR and CALIPSO orbits as described by Karlsson 

and Johansson (2013) and Karlsson and Håkansson (2018).  In particular, the extension of the 

matchup database resulting from the study by Karlsson and Håkansson (2018) has been very 

important here.  Some example results from this extended collocated dataset over 10 years 

(covering the period 2006-2015) have already been shown in the previous section. However, 

some necessary restrictions have since been incorporated to the probabilistic classifier to 

improve results further.  

 

A great advantage of the CALIPSO-CALIOP cloud products is their superior cloud detection 

sensitivity compared to cloud products based on passive instruments such as the AVHRR sensor. 

However, this is also a problem when using this information as the basis for a statistical training 

of a probabilistic cloud masking method. There is a risk for “over-training”, i.e., that we force 

the method to try to detect clouds that are theoretically impossible to detect from AVHRR sensor 

data. As a result, the probabilistic cloud-screening method would then risk to systematically 

creating false clouds in truly cloud-free areas, and vice versa, since the cloud-free signal cannot 

be confidently separated from the cloudy signal. For example, we might detect clouds usually 

denoted sub-visible cirrus clouds,  but false clouds could then also be added in adjacent areas 

without such clouds. Consequently, we need to find a way to restrict the used CALIOP-based 

cloud mask in the training process to include only those clouds which are potentially discernible 

in AVHRR images. In other words, we need to define the AVHRR cloud detection limit as 

accurately as possible.  

 

This task can also be formulated as follows: We need to find the proper restricted CALIPSO 

cloud mask that is most accurately reproduced by the AVHRR-based cloud masking method. 

This means that we have to filter out the thinnest CALIOP-detected clouds from the CALIOP 

cloud mask up to a certain limit or threshold in cloud optical thickness where we then can find 

the best resemblance with the AVHRR-derived cloud mask. This limit in optical cloud thickness 

can be denoted “Cloud Detection Sensitivity” for the method and it has previously been 

introduced as a useful concept by Karlsson and Håkansson (2018). We will use this concept 

here in the training and definition of the CMaprob method.   

 

A practical solution to the desire of finding the optimal training of the method (according to the 

principles introduced above) can be found if also adding the following criterion: 

 

 A binary cloud mask created by thresholding the cloud probability at the 50 % 

 probability level should give maximum detection skill compared to a cloud mask 

derived by any other probability threshold. 

[1] 

 

This criterion is not only necessary for solving the training problem but it also means that 

potential users of the product are given a clear recommendation on how to use the cloud 

probability results. Also, the above criterion should ideally (i.e., for practical reasons) be valid 

at every geographic location. A user could adjust the threshold making classification results to 
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be more clear-conservative (lowering the threshold) or more cloud-conservative (raising the 

threshold). However, the default threshold value at 50 % should be a reasonable starting point 

since the user would then know that by using this threshold should theoretically maximise the 

detection skill. For any other threshold, the rate of misclassifications will increase.  

 

The most natural detection skill score to use in this context is the Hitrate which is simply the 

percentage of correct cloudy and clear predictions with respect to the total number of 

predictions.  

 

To illustrate how we can use this skill score in the training process, we can study Figure 3-5 

taken from Karlsson and Johansson (2013). They introduced a plot on how the Hitrate and other 

skill scores (in this example, the Kuipers Skill Score) could vary as a function of the filtered 

cloud optical thickness. Basically, this shows how well the results of a specific method (in 

Figure 3-5 cloud masks produced for the CLARA-A1 climate data record) agree with restricted 

CALIOP cloud masks compared to the original CALIOP cloud mask. Notice that filtering does 

not mean that data is removed from the validation dataset. Instead, clouds with optical 

thicknesses below the filtered cloud optical thickness value are now interpreted as non-existent 

(i.e., changed into cloud-free).  

 

 

Figure 3-5 Hitrate and Kuipers skill scores as a function of filtered CALIOP cloud masks 

(cloud optical thickness limits) for CLARA-A1/PPS 2014 cloud masks. Results derived 

from 99 collocated NOAA-18 and CALIPSO-CALIOP cloud masks in the period 2006-

2009. (From Karlsson and Johansson, 2013). 

Figure 3-5 shows how skill scores first improves if filtering the thinnest (mostly non-detectable) 

clouds from the validation dataset but then decreases again after reaching a certain value of the 

filtered optical thickness. The decrease is explained by the fact that a larger fraction of correctly 

detected CALIOP-observed clouds is here converted to cloud-free (lowering the Hitrate) 

relative to how many missed clouds are converted into cloud-free (raising the Hitrate). At the 

maximum value for the Hitrate we get the best fit with a restricted filtered CALIOP cloud mask. 

In this example, this maximum Hitrate occurs for a filtered cloud optical thickness value of 

approximately 0.2 (or slightly lower for the Kuipers score). This optimal filtered value for 
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Hitrate is identical to the Cloud Detecting Sensitivity parameter introduced by Karlsson and 

Håkansson (2018). They calculated it for all locations on the globe when validating results of 

the CLARA-A2 climate data record (Karlsson et al., 2016). 

 

An important feature of the Hitrate curve in Figure 3-5 is that it possesses important information 

about the probability of detecting a cloud with a certain optical thickness. If calculating the 

Hitrate gradient from the values at finite intervals of filtered cloud optical thicknesses, we can 

deduce where the probability of detection reaches 50 %. More clearly, it means that, when the 

gradient is zero at the point of maximum Hitrate, we have reached the situation when the 

probability of detection of clouds is precisely 50 %. If the Hitrate stays constant after filtering 

(i.e., converting CALIOP clouds to cloud-free) a certain amount of clouds, it means that 50 % 

of those clouds were initially correctly classified. For intervals with lower cloud optical 

thicknesses, the probability of detection is always lower, and on the other side of the Hitrate 

maximum, it is always higher. If we imagine that our finite intervals (shown in Figure 3-5 as 

the distance between individual values on the curve) decrease towards infinitesimal widths we 

can then also say that we have a probability of detection of 50 % for cloud layers with an optical 

thickness of exactly this filtered cloud optical thickness value. We will utilise this property in 

the training process for CMa-prob since it has a direct link to criterion [1] above. 

 

To find a solution which optimizes our cloud probability results, i.e., which gives us as small 

Cloud Detection Sensitivity values as possible everywhere on the globe, we need to add another 

level of complexity. The trick is first to do repeated training of the classifier using the full range 

of restricted cloud masks, i.e. full range of filtered cloud optical thicknesses. In the next step, 

we then select the training statistics valid for that particular restricted cloud mask with a certain 

filtered optical thickness which coincides with the position of the Cloud Detection Sensitivity 

(i.e., position for maximum Hitrate). Then we can be sure that the 50 % probability of detection 

is valid for this particular Cloud Detection Sensitivity which means that we are fulfilling 

criterion [1] above. 

 

We can consider two cases:  

 

1. Hitrate peaks at smaller optical thicknesses than the filtered value used for the restricted 

cloud mask during training.  

2. Hitrate peaks at larger optical thicknesses than the filtered value used during training.  

 

Both cases mean that we are not succeeding in reproducing the restricted cloud mask that was 

used during training. The first case means that the used training statistics appears to be valid 

also to some extent for clouds with smaller optical thicknesses. Therefore, we should try to use 

a lower filtered optical thickness value during training. The second case means that a significant 

portion of the clouds is misclassified (missed), and we should therefore use a larger value for 

the optical thickness threshold of the restricted cloud mask.  

 

In practice, this means that we have to carry out this evaluation separately for every defined 

surface or region according to Table 3-4. In this way, we will get different optimal Cloud 

Detection Sensitivities for each surface or region which reflects the different separabilities of 

cloudy and cloud-free conditions that exist and depend on the underlying surface 

characteristics. Consequently, even if the 50 % cloud probability is used everywhere (as a basis 

for a binary cloud mask), the probability applies to clouds with different layer optical 

thicknesses which will vary with surface and region. The ambition is that by this method we 
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will be able to identify clouds which are radiatively significant, i.e., being identified for having 

a sufficient contrast against the surface for each region. If combining all these results globally 

we would then get improved results compared to if we just unconditionally train our method 

against the original and unrestricted CALIOP cloud mask. To test if this is finally achieved, we 

must prove that the overall validation results when validating against the unrestricted CALIOP 

cloud mask are better than results based on training exclusively using the original cloud mask. 

The latter case should give a higher rate of misclassifications if the concept is working.  

3.7 Resulting sets of optimal training statistics for different Earth surfaces 

The collected training dataset spans the period 2006-2015 and provides good global coverage 

over all seasons during that period. However, one year (2010) has been excluded from the 

training dataset to constitute an independent validation dataset. The training dataset is collected 

from almost 3000 NOAA-18 and NOAA-19 AVHRR Global Area Coverage (GAC) orbits and 

CALIOP pixels/samples at approximately 5 km horizontal resolution. The CALIPSO-CALIOP 

Cloud Layer (CLAY) product version 4.1 has been used. A more detailed description of this 

product is given by Karlsson and Håkansson (2018).  The constrained training (i.e., image 

features now being related to PPS threshold information) is based on results from the PPS 

software version 2021 [RD 1]. This PPS version is highly advanced compared to the original 

method described by Dybbroe et al. (2005). The main new features of the method concern 

adaptations to global processing (e.g., over desert and Polar Regions) and a systematic use of 

prescribed MODIS-derived surface emissivity information.  

 

Figures Figure 3-6 – Figure 3-9 below illustrate the selection of optimal training datasets over 

different surfaces and regions. Hitrate scores are plotted here using different curves representing 

training constellations using different restricted CALIOP cloud masks (explained in the legend). 

Notice that the training constellations that give the giving highest cloud detection sensitivities 

(i.e., the capability to detect the thinnest cloud optical thicknesses) and which fulfil criterion 

[1] above, are highlighted by thicker lines (in both figure and legend). In Figure 3-6, we study 

conditions for the surface with the best overall results globally, namely ice-free ocean surfaces 

over the extra-tropics (categories G4 and G8 in Table 3-4). We deduce that over these surfaces, 

we can use training data from a slightly restricted CALIOP cloud mask (-filtering at 0.05) 

during the day and from the unrestricted original CALIOP cloud mask during the night. Thus, 

the cloud detection sensitivity will then be 0.05 or even smaller over these surfaces.  

 

Conditions are more problematic over snow-free extratropical land surfaces (category G11 in 

Table 3-4) as shown in Figure 3-7. Best results are here found during daytime for a filtered 

cloud optical thickness of 0.6. Solutions for larger optical thicknesses also exist but the highest 

Hitrates are found for the lowest of the suggested solutions and; therefore, the solution with the 

smallest optical depth is chosen for this category. Nighttime results are less clear since we 

cannot find an obvious case where the Hit rate peak coincides with a particular trained filtered 

optical thickness. However, the highest scores are still given for almost the same chosen filtered 

optical thickness as for daytime conditions and we decided to use this value also at night. It 

should be noted that the perfect solution at night is maybe not covered by the different training 

constellations we tested. A finer resolution of restricted CALIOP masks could perhaps have 

suggested a cloud optical thickness value of 0.65.  
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Figure 3-6 Hitrate as a function of filtered cloud optical thicknesses of the CALIOP cloud mask 

for different training scenarios (coloured curves) over ice free extratropical ocean 

(categories G4 and G8 in Table 3-4) during day (left) and night (right). The coloured curves 

describe results based on different restricted CALIOP cloud masks used when training. 

Thick lines denote possible solutions fulfilling the criterion that Hitrate should be maximized 

for the same filtered optical thickness as was used during training.  

 

Figure 3-7 Same as Figure 3-6 but for snow-free extratropical land surfaces (category G11 in 

Table 3-4) during day (left) and night (right).  

Looking at results over well-known problematic areas, such as areas with permanent snow-

cover (category G13 in Table 3-4 including the dominant parts of Greenland and Antarctica) in 

Figure 3-8, the situation becomes less clear. Here, it is difficult to find any clear guidance on 

which solution to choose when training. No clear peaks in Hitrate seem to coincide with the 

selected filtering level used when training, indicating that, despite having seemingly 

homogeneous surface conditions, the true variability in results is very large over those surfaces. 

In addition, the variation seems to be much less linked to the cloud optical thickness of the 

clouds we intend to detect than for other surfaces. This can also be explained by existing 

contradicting results from different image features. If the necessary contrast needed for good 

cloud discrimination is found in one feature the situation can be completely the opposite for 

another image feature. This is a drawback of the Naïve Bayesian method, i.e. due to the 
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multiplication of individual probabilities, a near-zero value for one image feature will be able 

to compensate or neutralise results from other features.  

 

The problem with the results in Figure 3-8 is that no distinct peak can be found that coincides 

with the trained filtered cloud optical thickness. For daytime conditions, it seems a cloud 

detection sensitivity of about 1.0 would be suitable. However, alarmingly, the Hitrates for this 

value do not clearly decrease for larger filtered optical thicknesses. Therefore, even for higher 

optical thicknesses, almost 50% of all clouds will be missed. A better solution would be to 

choose a lower trained optical thickness value which is having a distinct peak but at a somewhat 

lower Hitrate value. A reasonable compromise could be to use the value 0.3. The peak in 

Hitrrate is still reasonably high, and a clear capability to detect clouds with larger optical 

thicknesses is retained.  

 

For night conditions in Figure 3-8 (right), the results are even harder to interpret. At first sight, 

a solution using the maximum filtered value of 5.0 is suggested. But in practice, it means that 

we will never reach 50 % probability of detection for any value of the layer optical thickness in 

the studied interval since the curve for the filtered value of 5.0 is monotonically increasing over 

the full range of filtered optical thicknesses. There are, however, distinct peaks in Hitrate for 

other filtered optical thickness (e.g. in the range 0.2- 0.8) but then having much lower Hitrates 

than what is indicated for the value 5.0 at the maximum filtering level. A compromise solution 

here could be to use the value 0.5 to acknowledge that situations should be more difficult than 

during daytime but not as extreme as suggested by the solution of using the value 5.0 for the 

restricted cloud mask. We conclude that, over the most problematic categories, we have to be 

careful using the general and idealized concept presented earlier since conditions are much 

more complex than over other Earth surfaces. To find the optimal reproduced CALIOP cloud 

mask seems very difficult here which forces us to use some compromise solutions. 

 

Figure 3-8 Same as Figure 3-6 but for homogeneous land surfaces with permanent snow-cover 

(category G13 in Table 3-4) during day (left) and night (right).  

Finally, we will also take a closer look at dry surfaces with sparse vegetation (category G10 in  

Table 3-4) in Figure 3-9. We generally notice very high Hitrates during both day and night and 

that the curves are quite similar to those found for extra-tropical land surfaces in Figure 3-7. 

However, the fact that no clear solution exists for the optimal cloud detection sensitivity during 

night or day, results appear uncertain, which probably indicates that conditions over desert 

surfaces are again not as homogeneous and representative as initially assumed. In addition, the 

behaviour of the curves at night is very different compared to how it looks during day and over 
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other surfaces. One reason for this could be the varying surface emissivities (influenced by both 

soil moisture conditions and surface material characteristics) in the infrared channels causing 

“cloud-like” temperature differences also in clear situations. Another reason could be that our 

reference surface skin temperatures from ERA-5 do not capture minimum temperatures at night 

very well (which is also problematic for the polar winter surfaces described earlier in Figure 

3-8 right). However, because of the high Hitrates found here, we will use similar optimal cloud 

optical thickness values as for the extra-tropical land surfaces. 

 

 

Figure 3-9 Same as Figure 3-6 but for dry land surfaces (category G10 in Table 3-4, dominated 

by deserts) with sparse vegetation during day (left) and night (right). 

We summarize the estimated optimal cloud detection sensitivities for all investigated surfaces 

in Table 3-5. The final statistics for the CMa-prob classifier is compiled by choosing trained 

statistics for each surface category trained by the CALIOP cloud masks defined by the surface-

specific optimal cloud detection sensitivities in Table 3-5. 

 

For the twilight category in Table 3-5, the CMa-prob classifier selects either night-time or 

daytime statistics depending on if a detectable reflection signal can be found in AVHRR channel 

1 at 0.6 microns. Thus, no specific twilight statistics is compiled but the used cloud detection 

sensitivity may still be different from the pure night and day case. 
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Table 3-5 Estimated optimal Cloud Detection Sensitivies (i.e., lowest cloud layer optical 

thicknesses with probability of detection exceeding 50 %) for different Earth surfaces 

(defined in Table 3-4) and for different illumination categories. For these filtered optical 

thicknesses, the best resemblance is achieved with the CALIOP cloud mask over different 

surfaces.  

 
SURFACE DESCRIPTION Surface id DAY NIGHT TWILIGHT 

Marginal sea ice high latitudes G1 0.05 0.05 0.05 

Sea ice high latitudes G2 0.25 0.60 0.25/0.60 

Ocean polar north G3 0.05 0.05 0.05 

Ocean high latitude north G4 0.05 0.05 0.05 

Ocean mid latitude north G5 0.05 0.05 0.05 

Ocean tropical G6 0.10 0.10 0.10 

Ocean mid latitude south G7 0.05 0.05 0.05 

Ocean high latitude south G8 0.05 0.05 0.05 

Ocean polar south G9 0.05 0.05 0.05 

Land dry homogeneous G10 0.25 0.25 0.25 

Land homogeneous extra tropical G11 0.20 0.25 0.20/0.25 

Land homogenous extra tropical 

seasonal snow 

G12 

 

0.20 

 

0.35 

 

0.20/0.35 

 

Land homogeneous extra tropical 

permanent snow 

G13 

 

0.30 

 

0.50 

 

0.30/0.50 

 

Land dry rough G14 0.30 0.40 0.30/0.40 

Land rough extra tropical G15 0.30 0.20 0.30/0.20 

Land rough extra tropical seasonal 

snow 

G16 

 

0.30 

 

0.50 

 

0.30/0.50 

 

Land rough extra tropical 

permanent snow 

G17 

 

0.15 

 

0.60 

 

0.15/0.60 

 

Land homogeneous tropical G18 0.15 0.15 0.15 

Land rough tropical G19 0.15 0.15 0.15 

Ocean polar north sunglint G20 0.05 - 0.05 

Ocean high latitude north 

sunglint 

G21 

 

0.05 

 

- 

 

0.05 

 

Ocean mid latitude north sunglint G22 0.05 - 0.05 

Ocean tropical sunglint G23 0.40 - 0.40 

Ocean mid latitude south sunglint G24 0.05 - 0.05 

Ocean highlatitude south sunglint G25 0.05 - 0.05 

Ocean polar south sunglint G26 0.10 - 0.10 

Coast extra tropical G27 0.20 0.50 0.20/0.50 

Coast tropical G28 0.50 0.15 0.50/0.15 
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4 Final implementation of CMa-prob and some demonstrated results 

4.1 Demonstration of impact of using cloud detection sensitivity statistics instead of 

statistics based on original CALIOP cloud mask 

 

Some results from selecting training statistics differently over various Earth surfaces are 

illustrated in this sub-section for some image features. 

 

Figure 4-1 shows the achieved training statistics for the visible reflectance feature (Rvis in 

Table 3-2) over dry and homogeneous land surfaces (category G10 in Table 3-4). The left part 

of the figure shows the cloud probability distribution as a function of reflectance after training 

with the cloud detection sensitivity value 0.25 (according to Table 3-5). The right part shows 

statistics compiled when training using the original unfiltered CALIOP cloud mask. The latter 

shows that cloud occurrences are not negligible for low-to-moderate reflectivities even if the 

majority of clouds occur for higher reflectivities. However, after training against a restricted 

cloud mask, filtering clouds with optical thicknesses below 0.25, the cloud probabilities at low-

to-moderate reflectivities are reduced (Figure 4-1 left). It means that some of the very thin 

clouds which previously were mixed up with the cloud-free reflectance are now treated as 

cloud-free cases. This improves the overall separability of cloudy and cloud-free cases. The 

separability would have improved even further if the suggested cloud detection sensitivity of 

0.9 of Figure 3-9 had been used. However, this would also have led to a considerable loss of 

fully detectable clouds in the optical thickness range of 0.25-0.9. Thus, the final choice of the 

cloud detection sensitivity parameter (i.e., the resulting CALIOP cloud mask to train the method 

against) has to be a compromise between the wish to get as high Hitrates as possible with a 

restricted CALIOP cloud mask and the wish to detect as many clouds as possible without 

introducing too many false detections. The peak of cloud occurrences seen in Figure 4-1 at very 

low reflectances is most likely explained by shadows from high-level clouds cast on other 

lower-level clouds.   

 

Figure 4-2 shows the same type of results as in Figure 4-1 but now for the reflectance in the 3.7 

micron channel (short-wave infrared with image feature named Rvis37). Again, we can see how 

the removal of the thin clouds (i.e., meaning that we now interpret them as cloud-free) below 

optical thickness 0.25 increases the separability between cloudy and clear cases. Clouds in this 

spectral region are either weakly reflecting (ice clouds) or strongly reflecting (water clouds). A 

few cases of very high reflectivities can be noted, but these link to noisy pixels not associated 

with proper quality flag information in original data. The intermediate region in the figure (i.e., 

valid for reflectivities in the interval 15-35 %) is dominated by moderately reflecting desert 

surfaces. If not filtering out the thinnest clouds, they are easily mixed up with the Earth’s surface 

as seen by the non-zero cloud frequencies here. But after filtering, the risk of misclassifying 

(remaining) clouds is reduced. We repeat that by filtering out the thin clouds we reduce the 

capability to detect any of these clouds, but on the other hand, we will now minimise the risk 

of creating false clouds with more or less the same spectral signature. The use of the cloud 

detection sensitivity parameter for guiding us with the filtering procedure will guarantee that 

we gain more than we lose by this filtering procedure.  
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Figure 4-1 Distribution of cloud occurrences (or cloud frequencies) as a function of the visible 

AVHRR reflectance at 0.6 micron (Rvis) over dry homogeneous surfaces (category G10 in 

Table 3-4 with predominantly desert surfaces). Left: Statistics based on training with a 

CALIOP cloud mask filtered at optical thickness 0.25. Right: Statistics based on training 

with the original unfiltered CALIOP cloud mask. 

 

 

Figure 4-2 Distribution of cloud occurrences (or cloud frequencies) as a function of the AVHRR 

reflectance at 3.7 micron (in %, image feature Rvis37 in Table 3-2) over dry homogeneous 

surfaces (surface G10 in Table 3-4 with predominantly desert surfaces). Left: Statistics 

based on training with a CALIOP cloud mask filtered at optical thickness 0.25. Right: 

Statistics based on training with the original unfiltered CALIOP cloud mask. 
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A final example of the effect of filtering is shown in Figure 4-3 for the absolutely most 

problematic cloud detection condition encountered for AVHRR data: night-time cloud detection 

over cold and snow-covered surfaces (e.g., polar night over Greenland and Antarctica in surface 

group G13 in Table 3-4). The figure shows the cloud probability as a function of the difference 

between the AVHRR brightness temperature at 11 microns and the surface temperature from 

ERA-5 (image feature Tirdiff). The right part shows results when training against the unfiltered 

CALIOP cloud mask while the left part shows results when training against a CALIOP cloud 

mask filtered at optical thickness 0.5.  

 

It is clear that for unfiltered training the probability of cloudy conditions is high for almost all 

the time, except for cases when the surface temperature is much colder than the measured 11 

micron brightness temperature (i.e., for large negative differences). However, probabilities are 

generally uncertain (i.e., close to 50 %) and only for restricted parts of the distribution do we 

find high and low probabilities which could contribute favourably to the cloud detection 

process. After filtering with a cloud optical thickness of 0.5 (Figure 4-3, left), a large fraction 

of all clouds disappears (i.e., are now interpreted as cloud-free) and only clouds which are much 

colder than the ERA-5 surface temperature remain with cloud probabilities clearly above 50 %. 

It means that only optically thick and cold clouds are possible to detect with confidence over 

this surface type for this image feature.  

 

The unfiltered results (Figure 4-3, right) indicate some skill in also identifying clouds which 

are warmer than the surface (e.g., “black stratus”) for temperature differences near -25 K. The 

probabilities for the detection of these clouds after the filtering has generally improved. Still, 

they are nevertheless close to 50 % (i.e., very uncertain). Successful identification of these 

clouds now depends on if also cloud probabilities are high enough for the other two infrared 

image features ((Twdiff and Tcidiff in Table 3-3). For the black stratus clouds, Twdiff is 

important since it normally shows a negative temperature difference between AVHRR channels 

at 3.7 microns and 11 microns as opposed to clear areas and ice clouds (the latter showing a 

positive temperature difference). But for very cold situations, this typical cloud feature becomes 

less reliable, which is caused by the transition from pure water clouds at higher temperatures to 

mixed phase clouds at cold temperatures. In addition, increasing radiometric noise in the 3.7 

micron channel (leading to random positive and negative Twdiff values) will further decrease 

the usefulness of the Twdiff feature. In conclusion, cloud detection capabilities in AVHRR data 

over cold surfaces during the polar night remains as the most challenging of tasks for any cloud 

detection scheme. 
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Figure 4-3 Night-time distribution of cloud occurrences (or cloud frequencies) as a function of 

the difference between the AVHRR brightness temperature at 11 micron and the surface 

temperature from ERA-5 (image feature Tirdiff) over permanently snow-covered surfaces 

(group G13 in Table 3-4) at night. Left: Statistics based on training with a CALIOP cloud 

mask filtered at optical thickness 0.5. Right: Statistics based on training with the original 

unfiltered CALIOP cloud mask. 

An attempt trying to improve the detection of low clouds at night is to treat features Twdiff and 

Tirdiff jointly and not as independent single features. The latter often leads to that information 

in the two features cancel out each other (i.e., they are negatively correlated). More clearly, the 

Twdiff feature could indicate high cloud probabilities in situations when we have strong surface 

temperature inversions but such conditions are often associated with low cloud probabilities in 

image feature Tirdiff (i.e., clouds are predominantly colder than the surface). To avoid 

cancellation in this way, we have used feature 2D_Tirdiff_Twidiff which as introduced earlier 

in Table 3-3. Figure 4-4 illustrates cloud probabilities in this feature over snow-free land 

surfaces at night over relatively cold surfaces (category G11). Here we can clearly see that it is 

possible to get high cloud probabilities (higher than 50 %) also when the Tirdiff feature is 

strongly negative. So, by using this 2-D feature, we have reduced the risk of problems due to 

the negative correlation between these two features.  
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Figure 4-4 Illustration of cloud probabilities in a 2-D histogram with respect to features 

Twdiff (x-axis) and Tirdiff (y-axis) over snow-free land surfaces at high latitudes (category 

G11 in Table 3-4) during night. 

4.2 Treatment of data from satellites with the 1.6 micron channel replacing the 3.7 

micron channel 

Table 3-2 lists also the image feature Rswir_3a which is based on the reflectivity in the AVHRR 

channel at 1.6 microns divided by corresponding reflectivities in the AVHRR channel at 0.6 

microns. This feature is conceptionally similar to feature Rswir_quota in Table 3-2 (also used 

by CMa-prob but not illustrated here). Channel 3a is only available operationally (with only a 

few exceptions) from satellites operating in morning orbits (e.g., NOAA-17, METOP-A, 

METOP-B and METOP-C). Data from satellites in morning orbit can also be collocated with 

CALIPSO-CALIOP data but only for positions close to approximately latitude 70 degrees. This 

means that Rswir_3a statistics cannot be collected with global coverage. This is particularly 

problematic for the dry land surface categories (G10 and G14 in Table 3-4) when considering 

that the surface reflectivity at 1.6 microns is high over desert surfaces risking to be mixed up 

with corresponding cloud reflectivities. 

 

We have overcome this problem by training CMa-prob against corresponding 1.6 micron 

radiances measured by the MODIS instrument carried by the Aqua satellite. This can be done 

since the spectral responses at this particular channel (and also for the channel at 0.6 microns 
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used to calculate the reflectance quota) are very similar for the AVHRR and MODIS sensors. 

The Aqua satellite is part of the A-train, and it thus offers almost simultaneous and continuous 

observations with CALIPSO-CALIOP. We used one year of MODIS data (2010) for training 

the CMa-prob method.   
 

Figure 4-5 shows resulting daytime Rswir_3a probability distributions for desert surfaces 

(category G10) and for surfaces with permanent snow-cover (category G13). Results here are 

based on training with the unfiltered CALIOP cloud mask. We notice a very distinctive cloud 

signature in both cases (with the majority of cloud-free cases predominantly occurring at feature 

values below 0.2) showing that this image feature can be used with great confidence in the 

cloud screening process. This feature appears actually more reliable for detection of clouds over 

desert surfaces than the previously described Rvis37 feature (see Figure 4-2 right). Distributions 

for the latter has a much more serious mix between cloudy and clear radiances (e.g., in the 

interval 15-35 % reflectivity). The high cloud detection capability of this feature over snow-

covered surfaces is also clearly seen in Figure 4-5 (right). This was the major reason for 

introducing this channel historically. 

 

 

Figure 4-5 Daytime distribution of cloud occurrences (or cloud frequencies) as a function of 

the reflectance quota (Rswir_3a in Table 3-2) between AVHRR-heritage channels at 1.6 

micron and 0.6 microns based on Aqua Modis data. Left: Distribution over dry surfaces 

(surface category G10 in Table 3-4). Right:  Distribution over surfaces with permanent 

snow-cover (surface category G13 in Table 3-4). All statistics are calculated from 

collocations with the original unfiltered CALIOP cloud mask. 
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4.3 Product demonstration 

 
The CMa-prob product is available in PPS version 2021 for both high resolution AVHRR data 

(HRPT, 1 km) and reduced resolution Global Area Coverage (GAC, 5 km) data. It is also 

possible to produce CMa-prob results for MODIS, VIIRS, and MERSI-2 data based on statistics 

derived from AVHRR and MODIS data. Representative training data for VIIRS from 

collocations with CALIPSO-CALIOP remains to be compiled in the future. It is also technically 

working1, to process data from SLSTR and METimage instruments (for the latter only tested 

on simulated data so far); for PPS v2021 the processing of SLSTR and METimage is considered 

demonstrational.  

 

We will here show two examples of the resulting products based on AVHRR GAC data.  

Figure 4-6 They are selected for their quite difficult observation conditions: High solar zenith 

angles over an area largely covered with snow and ice at the surface.  

 

Figure 4-6 shows a NOAA-18 overpass over the Greenland area in ascending node. We have 

twilight conditions in a large part of the scene, especially in the lower portion (closest to the 

North Pole). The colour composite illustrates the difficulty in separating clouds from bright 

surfaces over the entire area. By using just visible and thermal infrared data, this separation is 

difficult. But the access to measurements in shortwave infrared channel 3b of AVHRR (not 

shown in the colour composite image) provides essential information for identifying low level 

water clouds. These clouds are identified with high confidence (high probability) in the CMa-

prob image (Figure 4-6, right).  

 

The situation is not as favourable for the identification of ice clouds since these clouds are not 

as reflective as in the shortwave infrared channel. This means that such clouds over the 

Greenland ice sheet (in the right part of the image) are hard to detect and they consequently get 

lower cloud probabilities, and even below 50 % as is indicated by the bluish colour. Similar 

thin clouds over the open water surfaces further south (in the upper part of the image) are, 

however, much easier to detect and readily get cloud probabilities near 100 % (white colour). 

Bare in mind that the cloud probabilities seen over Greenland is with respect to clouds with a 

minimum cloud optical thickness of 0.5 (i.e., thinner clouds will not be detected) while the 

corresponding reference over open water is clouds with minimum cloud optical thickness of 

0.05 (see Table 3-5).  

 

Figure 4-7 shows a similar situation but now with data from the NOAA-17 satellite in a morning 

orbit and in descending node. In this case, we no longer have access to the short-wave infrared 

channel at 3.7 microns but instead data from the near infrared channel at 1.6 microns (channel 

3a, see Table 3-1). However, despite the channel shift, results look very similar to the previous 

case. Water clouds are easily detected, even over snow- and ice-cover. Notice in particular, the 

cloud detection performance over snow covered land in north-eastern Canada in the lower part 

of the image. The same limitations regarding the detection of thin ice clouds can also be noticed 

                                            
1 With technically working we mean: 1) Visual inspection shows product similar to what we get for 
supported sensors. 2) Visual inspection of RGBs compared to the product confirms that results are 
reasonable. 3) We have no reason to expect degraded results for this specific sensor. 4) But the 
product is not tuned or quantitatively validated with this specific sensor. 
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over the Greenland ice sheet. The human eye can see shadows on the ground and at the sides 

of these clouds, which reveal their existence, but to use this information in this context is very 

difficult. Nevertheless, we conclude that the CMa-prob concept seems to work with fully 

comparable results even with different input data from the AVHRR sensor.  

  

 

 

 

  Figure 4-6 Part of an original NOAA-18 AVHRR GAC scene in satellite projection over the 

Greenland area registered in ascending mode (i.e., North is down, South is up) from 16 May 

2007 at 11:59 UTC. Left: Colour composite with AVHRR channel 1 (red), channel 2 (green) 

and channel 4 (blue). Right: Corresponding CMa-Prob cloud probabilities as greyscale 

image with range 0-100 %. Notice, however, that cloud probabilities below 50 % has a 

blueish colour.  
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 Figure 4-7 Part of an original NOAA-17 AVHRR GAC scene in satellite projection over the 

Greenland area registered in descending mode (i.e., North is up, South is down) from 16May 

2007 at 15:13 UTC. Left: Colour composite with AVHRR channel 1 (red), channel 2 (green) 

and channel 4 (blue). Right: Corresponding CMa-prob cloud probabilities as greyscale 

image with range 0-100 %. Notice, however, that cloud probabilities below 50 % has a 

blueish colour. 
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5 Limitations and areas for future improvements 

The CMa-prob method described in this document is the fourth prototype version and is this 

time based on dynamic threshold information from PPS version 2021. The first version was 

described in the paper by Karlsson et al. (2015) and was based on dynamic threshold 

information from PPS version 2010. The second version (briefly described by Karlsson et al., 

2016) was based on dynamic threshold information from PPS version 2014. The third version 

was based on dynamic threshold information from PPS version 2018. Thus, it is clear that the 

method should be seen as an extension of the official PPS software and it cannot be run 

independently from PPS. Consequently, if continuing with this approach the method needs to 

be updated (new training) for every new release of the PPS method.  

Statistical methods are always limited by the amount and quality of training data being used. It 

is clear from probability distributions shown in Sections 3.6 and 3.7, that the current training 

dataset needs to be further extended by providing very well-defined probability distributions 

over all Earth surfaces and for all conditions. Additionally, for some sensors like VIIRS, 

MERSI-2 and SLSTR, the method is currently executable based exclusively on statistics based 

on AVHRR and MODIS data. Thus, thorough training with, e.g., real VIIRS data has still to be 

done. In that respect, it is very encouraging that results are still as good as being documented 

in a previous validation report for an earlier version of CMa-prob (RD 2). However, it is very 

clear that an improved amount of training data would be beneficial for future versions of the 

method. Consequently, it is planned to extend the training material with considerably more data 

from CALIPSO up to present date. Also, ways of transferring the results between different 

satellite sensors will be considered (e.g., by use of Spectral Band Adjustment Factors (SBAFs, 

Bhatt et al., 2016). 

 

6 Final remarks 

This ATBD describes a method trying to address the quite serious problem that most cloud 

detection methods (including already existing probabilistic methods) do not describe in a 

quantitative way for which clouds the cloud mask or cloud probability is valid. This lack of 

information may mislead the user to believe that results are valid for any kind of cloud. The 

CMa-prob method provides additional information, in the sense that it describes for which 

clouds (i.e., their minimum cloud optical thickness) the cloud probability is valid. This 

minimum cloud optical thickness varies over different Earth surfaces since cloud separability 

is a function of both the cloud optical thickness and the characteristics of the Earth surface. 

The key tool for adding this level of information to the cloud masking results has been the 

access to detailed cloud information from the CALIPSO-CALIOP measurements.  

The concept used for CMa-prob assumes that cloud detectability is a function of cloud optical 

thickness and that this function can be described properly over homogeneous Earth surfaces. 

This has proven to be correct for many surfaces, e.g. over ocean surfaces without sunglint and 

ice cover. However, over many land surfaces and, especially, during cold surface conditions at 

night, application of the CMa-prob concept has shown to be problematic, leading to 

approximate solutions. The likely reason for this is that these surfaces do not provide reasonably 

homogeneous conditions which means that cloud detectability will depend on many other 

variables than just the cloud optical thickness. Further progress of methods applied over these 
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problematic surfaces has to include ways of stratifying data in a more efficient way to isolate 

the specific link to cloud optical thickness. This can possibly be achieved by use of more 

advanced machine-learning methods. The hope is that some of the findings from the work with 

CMa-prob methodology can be utilised in the development of such more advanced methods. 
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8 Glossary 

 

ATBD Algorithm Theoretical Baseline Document 

AVHRR Advanced Very High Resolution Radiometer 

CALIOP Cloud-Aerosol Lidar with Orthogonal Polarization (CALIPSO) 

CALIPSO Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations 

CDOP Continuous Development and Operations Phase 

CLARA CMSAF cLoud, Albedo and surface RAdiation dataset 

CMa-prob Cloud Mask (probabilistic) 

CM SAF Satellite Application Facility on Climate Monitoring 

CPP Cloud Physical Properties 

DRI Delivery Readiness Inspection 

DWD Deutscher Wetterdienst (German MetService) 

ECMWF European Centre for Medium Range Forecast 

ECV Essential Climate Variable 

EPS European Polar System 

https://doi.org/10.5194/essd-10-583-2018
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EPS-SG EPS Second Generation 

ERA-5 

 

 

ECMWF Reanalysis, 5th edition 

https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation 

 

EUMETSAT 
European Organisation for the Exploitation 

of Meteorological Satellites 

FOV Field of view 

GAC Global Area Coverage (AVHRR) 

GCOS Global Climate Observing System 

IOP Initial Operations Phase 

ITCZ Inter-Tropical Convergence Zone 

KNMI Koninklijk Nederlands Meteorologisch Institut 

MERSI-2 Medium Resolution Spectral Imager onboard Chinese FYI-3 satellites 

METimage Meteorological imaging instrument for EPS-SG satellites 

NASA National Aeronautics and Space Administration 

NDBC National Data Buoy Center 

NESDIS National Environmental Satellite, Data, and Information System 

NOAA National Oceanic & Atmospheric Administration 

NODC National Oceanographic Data Center 

NSIDC National Snow and Ice Data Center 

NWCSAF Satellite Application Facility for Nowcasting  

NWP Numerical Weather Prediction 

PPS Polar Platform System 

PRD Product Requirement Document 

PUM Product User Manual 

RMIB Royal Meteorological Institute of Belgium 

RMS Root Mean Square 

RSMAS Rosenstiel School of Marine and Atmospheric Science 

RSS Remote Sensing Systems 

SAF Satellite Application Facility 

SLSTR Sea and Land Surface Temperature Radiometer onboard satellite Sentinel-3 

SMHI Swedish Meteorological and Hydrological Institute 

SST Sea Surface Temperature 

 

https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation
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